25 research outputs found

    A new route towards uniformly functionalized single-layer graphene

    Get PDF
    It is shown, by DFT calculations, that the uniform functionalization of upper layer of graphite by hydrogen or fluorine does not change essentially its bonding energy with the underlying layers, whereas the functionalization by phenyl groups decreases the bonding energy by a factor of approximately ten. This means that the functionalized monolayer in the latter case can be easily separated by mild sonication. According to our computational results, such layers can be cleaned up to pure graphene, as well as functionalized further up to 25% coverage, without essential difficulties. The energy gap within the interval from 0.5 to 3 eV can be obtained by such one-side funtionalization using different chemical species.Comment: 15 pages, 3 figures, to appear in J. Phys. D: Applied Physic

    Mild sonochemical exfoliation of bromine-intercalated graphite: a new route towards graphene

    Get PDF
    A method to produce suspensions of graphene sheets by combining solution-based bromine intercalation and mild sonochemical exfoliation is presented. Ultrasonic treatment of graphite in water leads to the formation of suspensions of graphite flakes. The delamination is dramatically improved by intercalation of bromine into the graphite before sonication. The bromine intercalation was verified by Raman spectroscopy as well as by x-ray photoelectron spectroscopy (XPS), and density functional theory (DFT) calculations show an almost ten times lower interlayer binding energy after introducing Br(2) into the graphite. Analysis of the suspended material by transmission and scanning electron microscopy (TEM and SEM) revealed a significant content of few-layer graphene with sizes up to 30 mu m, corresponding to the grain size of the starting material

    Temperature oscillations of magnetization observed in nanofluid ferromagnetic graphite

    Full text link
    We report on unusual magnetic properties observed in the nanofluid room-temperature ferromagnetic graphite (with an average particle size of l=10nm). More precisely, the measured magnetization exhibits a low-temperature anomaly (attributed to manifestation of finite size effects below the quantum temperature) as well as pronounced temperature oscillations above T=50K (attributed to manifestation of the hard-sphere type pair correlations between ferromagnetic particles in the nanofluid)

    Mild sonochemical exfoliation of bromine-intercalated graphite: a new route towards graphene

    Get PDF
    A method to produce suspensions of graphene sheets by combining solution-based bromine intercalation and mild sonochemical exfoliation is presented. Ultrasonic treatment of graphite in water leads to the formation of suspensions of graphite flakes. The delamination is dramatically improved by intercalation of bromine into the graphite before sonication. The bromine intercalation was verified by Raman spectroscopy as well as by x-ray photoelectron spectroscopy (XPS), and density functional theory (DFT) calculations show an almost ten times lower interlayer binding energy after introducing Br2 into the graphite. Analysis of the suspended material by transmission and scanning electron microscopy (TEM and SEM) revealed a significant content of few-layer graphene with sizes up to 30 mumum, corresponding to the grain size of the starting material.Comment: 10 pages 4 figure

    First-principles modeling of the polycyclic aromatic hydrocarbons reduction

    Full text link
    Density functional theory modelling of the reduction of realistic nanographene molecules (C42H18, C48H18 and C60H24) by molecular hydrogen evidences for the presence of limits in the hydrogenation process. These limits caused the contentions between three-fold symmetry of polycyclic aromatic hydrocarbon molecules and two-fold symmetry of adsorbed hydrogen pairs. Increase of the binding energy between nanographenes during reduction is also discussed as possible cause of the experimentally observed limited hydrogenation of studied nanographenes.Comment: 18 pages, 7 figures, accepted to J. Phys. Chem.

    Bromination of double-walled carbon nanotubes

    Get PDF
    Double-walled carbon nanotubes (DWCNTs) synthesized by catalytic chemical vapor deposition (CCVD) have been functionalized by bromine vapor at room temperature. At least two different bromine species were detected in the product using X-ray photoelectron spectroscopy (XPS) and thermal gravimetric analysis. The primary form is negatively charged Br2 molecules exhibiting an intense resonance at ∼238 cm−1 in the Raman spectrum. The electron transfer from the nanotubes to the adsorbed molecules is detected from C 1s XPS and near-edge X-ray absorption fine structure spectra. The optical absorption spectra reveal that although the metallic nanotubes are more reactive to Br2, the outer semiconducting nanotubes also readily interact with Br2 adsorbates. The secondary bromine form is attributed to covalent C-Br bonding, and its possible sources are discussed in the light of quantum-chemical calculations. Analysis of the XPS, Raman, and optical absorption spectra of the Br-DWCNTs annealed at 100-170 ° C indicates preservation of a part of bromine molecules in samples that affects the electronic and vibration properties of nanotubes
    corecore