314 research outputs found

    Stencil Printing-A Novel Manufacturing Platform for Orodispersible Discs

    Get PDF
    Stencil printing is a commonly used printing method, but it has not previously been used for production of pharmaceuticals. The aim of this study was to explore whether stencil printing of drug containing polymer inks could be used to manufacture flexible dosage forms with acceptable mass and content uniformity. Formulation development was supported by physicochemical characterization of the inks and final dosage forms. The printing of haloperidol (HAL) discs was performed using a prototype stencil printer. Ink development comprised of investigations of ink rheology in combination with printability assessment. The results show that stencil printing can be used to manufacture HAL doses in the therapeutic treatment range for 6-17 year-old children. The therapeutic HAL dose was achieved for the discs consisting of 16% of hydroxypropyl methylcellulose (HPMC) and 1% of lactic acid (LA). The formulation pH remained above pH 4 and the results imply that the drug was amorphous. Linear dose escalation was achieved by an increase in aperture area of the print pattern, while keeping the stencil thickness fixed. Disintegration times of the orodispersible discs printed with 250 and 500 mu m thick stencils were below 30 s. In conclusion, stencil printing shows potential as a manufacturing method of pharmaceuticals

    Unintended pregnancy: magnitude and correlates in six urban sites in Senegal

    Get PDF
    BACKGROUND: In Senegal, unintended pregnancy has become a growing concern in public health circles. It has often been described through the press as a sensational subject with emphasis on the multiple infanticide cases as a main consequence, especially among young unmarried girls. Less scientific evidence is known on this topic, as fertility issues are rarely discussed within couples. In a context where urbanization is strong, economic insecurity is persistent and the population is globalizing, it is important to assess the magnitude of unintended pregnancy among urban women and to identify its main determinants. METHODS: Data were collected in 2011 from a representative sample of 9614 women aged 15–49 years in six urban sites in Senegal. For this analysis, we include 5769 women who have ever been pregnant or were pregnant at the time of the survey. These women were asked if their last pregnancy in the last two years was ‘wanted ’then’, ‘wanted later’ or ‘not wanted’. Pregnancy was considered as unintended if the woman responded ‘wanted later’ or ‘not wanted’. Descriptive analyses were performed to measure the magnitude of unintended pregnancies, while multinomial logistic regression models were used to identify factors associated with the occurrence of unintended pregnancy. The analyses were performed using Stata version 12. All results were weighted. RESULTS: The results show that 14.3% of ever pregnant women reported having a recent unintended pregnancy. The study demonstrates important distinctions between women whose last pregnancy was intended and those whose last pregnancy was unintended. Indeed, this last group is more likely to be poor, from a young age (< 25 years) and multiparous. In addition, it appears that low participation of married women in decision-making within the couple (management of financial resources) and the lack of discussion on family planning issues are associated with greater experience of unintended pregnancy. CONCLUSION: This study suggests a need to implement more targeted programs that guarantee access to family planning for all women in need. In urban areas that are characterized by economic insecurity, as in Senegal, it is important to consider strategies for promoting communication within couples on fertility issues

    Distinguishing Binders from False Positives by Free Energy Calculations: Fragment Screening Against the Flap Site of HIV Protease

    Full text link
    Molecular docking is a powerful tool used in drug discovery and structural biology for predicting the structures of ligand–receptor complexes. However, the accuracy of docking calculations can be limited by factors such as the neglect of protein reorganization in the scoring function; as a result, ligand screening can produce a high rate of false positive hits. Although absolute binding free energy methods still have difficulty in accurately rank-ordering binders, we believe that they can be fruitfully employed to distinguish binders from nonbinders and reduce the false positive rate. Here we study a set of ligands that dock favorably to a newly discovered, potentially allosteric site on the flap of HIV-1 protease. Fragment binding to this site stabilizes a closed form of protease, which could be exploited for the design of allosteric inhibitors. Twenty-three top-ranked protein–ligand complexes from AutoDock were subject to the free energy screening using two methods, the recently developed binding energy analysis method (BEDAM) and the standard double decoupling method (DDM). Free energy calculations correctly identified most of the false positives (≥83%) and recovered all the confirmed binders. The results show a gap averaging ≥3.7 kcal/mol, separating the binders and the false positives. We present a formula that decomposes the binding free energy into contributions from the receptor conformational macrostates, which provides insights into the roles of different binding modes. Our binding free energy component analysis further suggests that improving the treatment for the desolvation penalty associated with the unfulfilled polar groups could reduce the rate of false positive hits in docking. The current study demonstrates that the combination of docking with free energy methods can be very useful for more accurate ligand screening against valuable drug targets

    Human Gastric Mucins Differently Regulate Helicobacter pylori Proliferation, Gene Expression and Interactions with Host Cells

    Get PDF
    Helicobacter pylori colonizes the mucus niche of the gastric mucosa and is a risk factor for gastritis, ulcers and cancer. The main components of the mucus layer are heavily glycosylated mucins, to which H. pylori can adhere. Mucin glycosylation differs between individuals and changes during disease. Here we have examined the H. pylori response to purified mucins from a range of tumor and normal human gastric tissue samples. Our results demonstrate that mucins from different individuals differ in how they modulate both proliferation and gene expression of H. pylori. The mucin effect on proliferation varied significantly between samples, and ranged from stimulatory to inhibitory, depending on the type of mucins and the ability of the mucins to bind to H. pylori. Tumor-derived mucins and mucins from the surface mucosa had potential to stimulate proliferation, while gland-derived mucins tended to inhibit proliferation and mucins from healthy uninfected individuals showed little effect. Artificial glycoconjugates containing H. pylori ligands also modulated H. pylori proliferation, albeit to a lesser degree than human mucins. Expression of genes important for the pathogenicity of H. pylori (babA, sabA, cagA, flaA and ureA) appeared co-regulated in response to mucins. The addition of mucins to co-cultures of H. pylori and gastric epithelial cells protected the viability of the cells and modulated the cytokine production in a manner that differed between individuals, was partially dependent of adhesion of H. pylori to the gastric cells, but also revealed that other mucin factors in addition to adhesion are important for H. pylori-induced host signaling. The combined data reveal host-specific effects on proliferation, gene expression and virulence of H. pylori due to the gastric mucin environment, demonstrating a dynamic interplay between the bacterium and its host

    International consensus recommendations for management of new onset refractory status epilepticus including febrile infection-related epilepsy syndrome: Statements and supporting evidence

    Get PDF
    Objective: This study was undertaken to develop consensus-based recommendations for the management of adult and pediatric patients with new onset refractory status epilepticus (NORSE)/febrile infection-related epilepsy syndrome (FIRES) based on best evidence and experience. Methods: The Delphi methodology was followed. A facilitator group of nine experts was established, who defined the scope, users, and suggestions for recommendations. Following a review of the current literature, recommendation statements concerning diagnosis, treatment, and research directions were generated, which were then rated on a scale of 1 (strongly disagree) to 9 (strongly agree) by a panel of 48 experts in the field. Consensus that a statement was appropriate was reached if the median score was ≥7 and inappropriate if the median score was ≤3. The analysis of evidence was mapped to the results of each statement included in the Delphi survey. Results: Overall, 85 recommendation statements achieved consensus. The recommendations are divided into five sections: (1) disease characteristics; (2) diagnostic testing and sampling; (3) acute treatment; (4) treatment in the postacute phase; and (5) research, registries, and future directions in NORSE/FIRES. The detailed results and discussion of all 85 statements are outlined herein. A corresponding summary of findings and practical flowsheets are presented in a companion article. Significance: This detailed analysis offers insight into the supporting evidence and the current gaps in the literature that are associated with expert consensus statements related to NORSE/FIRES. The recommendations generated by this consensus can be used as a guide for the diagnosis, evaluation, and management of patients with NORSE/FIRES, and for planning of future research

    Beta 1-integrin-c-Met cooperation reveals an inside-in survival signalling on autophagy-related endomembranes

    Get PDF
    This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/R.B.M. was a recipient of a UK Medical Research Council (MRC) studentship, MRC Centenary Award, Barts and The London Charity (472/1711) and Rosetrees Trust (M314), N.K. was a recipient of an MRC studentship (MR/J500409/1), C.J. was a recipient of the Barts and The London Charitable Foundation Scholarship (RAB 05/PJ/07), L.M. was supported by CR-UK, Breast Cancer Now (2008NovPR10) and Rosetrees Trust (M346), A.H. was a recipient of a CR-UK studentship (C236/A11795). P.J.P. was supported by CR-UK. J.I. was supported by grants from the Academy of Finland, ERC Starting grant, Finnish Cancer Organisations and Sigrid Juselius Foundation. S.K. was supported by the MRC (G0501003) and The British Lung Foundation (CAN09-4)

    Two-pronged attack: dual inhibition of Plasmodium falciparum M1 and M17 metalloaminopeptidases by a novel series of hydroxamic acid-based inhibitors

    Get PDF
    Plasmodium parasites, the causative agents of malaria, have developed resistance to most of our current antimalarial therapies, including artemisinin combination therapies which are widely described as our last line of defense. Antimalarial agents with a novel mode of action are urgently required. Two Plasmodium falciparum aminopeptidases, PfA-M1 and PfA-M17, play crucial roles in the erythrocytic stage of infection and have been validated as potential antimalarial targets. Using compound-bound crystal structures of both enzymes, we have used a structure-guided approach to develop a novel series of inhibitors capable of potent inhibition of both PfA-M1 and PfA-M17 activity and parasite growth in culture. Herein we describe the design, synthesis, and evaluation of a series of hydroxamic acid-based inhibitors and demonstrate the compounds to be exciting new leads for the development of novel antimalarial therapeutics

    Newly established tumourigenic primary human colon cancer cell lines are sensitive to TRAIL-induced apoptosis in vitro and in vivo

    Get PDF
    Most data on the therapeutic potential of tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) as well as resistance to FAS ligand (FASL) in colorectal cancer have come from in vitro studies using cell lines. To gain a clearer understanding about the susceptibility of patient tumours to TRAIL and FASL, we derived primary human cancer epithelial cells from colon cancer patients. Characterisation of primary cultures PAP60 and MIH55 determined their highly proliferating advantage, transforming capability and tumorigenicity in vitro and in vivo. Although FASL treatment appeared to cause little apoptosis only in the PAP60 primary culture, increased apoptosis independent of p53 was observed in both primary PAP60 and MIH55 and control cell lines Caco-2, HT29 and DLD-1 after treatment with SuperKiller TRAIL. Expression analysis of death receptors (DR) in the original parental tumours, the primary cultures before and after engraftment as well as the mouse xenografts, revealed a significant upregulation of both DR4 and DR5, which correlated to differences in sensitivity of the cells to TRAIL-induced apoptosis. Treating patient tumour xenograft/SCID mouse models with Killer TRAIL in vivo suppressed tumour growth. This is the first demonstration of TRAIL-induced apoptosis in characterised tumorigenic primary human cultures (in vitro) and antitumour activity in xenograft models (in vivo)
    • …
    corecore