1,783 research outputs found
LISA Response Function and Parameter Estimation
We investigate the response function of LISA and consider the adequacy of its
commonly used approximation in the high-frequency range of the observational
band. We concentrate on monochromatic binary systems, such as white dwarf
binaries. We find that above a few mHz the approxmation starts becoming
increasingly inaccurate. The transfer function introduces additional amplitude
and phase modulations in the measured signal that influence parameter estmation
and, if not properly accounted for, lead to losses of signal-to-noise ratio.Comment: 4 pages, 2 figures, amaldi 5 conference proceeding
Facing the LISA Data Analysis Challenge
By being the first observatory to survey the source rich low frequency region
of the gravitational wave spectrum, the Laser Interferometer Space Antenna
(LISA) will revolutionize our understanding of the Cosmos. For the first time
we will be able to detect the gravitational radiation from millions of galactic
binaries, the coalescence of two massive black holes, and the inspirals of
compact objects into massive black holes. The signals from multiple sources in
each class, and possibly others as well, will be simultaneously present in the
data. To achieve the enormous scientific return possible with LISA,
sophisticated data analysis techniques must be developed which can mine the
complex data in an effort to isolate and characterize individual signals. This
proceedings paper very briefly summarizes the challenges associated with
analyzing the LISA data, the current state of affairs, and the necessary next
steps to move forward in addressing the imminent challenges.Comment: 4 pages, no figures, Proceedings paper for the TeV Particle
Astrophysics II conference held Aug 28-31 at the Univ. of Wisconsi
MCMC Exploration of Supermassive Black Hole Binary Inspirals
The Laser Interferometer Space Antenna will be able to detect the inspiral
and merger of Super Massive Black Hole Binaries (SMBHBs) anywhere in the
Universe. Standard matched filtering techniques can be used to detect and
characterize these systems. Markov Chain Monte Carlo (MCMC) methods are ideally
suited to this and other LISA data analysis problems as they are able to
efficiently handle models with large dimensions. Here we compare the posterior
parameter distributions derived by an MCMC algorithm with the distributions
predicted by the Fisher information matrix. We find excellent agreement for the
extrinsic parameters, while the Fisher matrix slightly overestimates errors in
the intrinsic parameters.Comment: Submitted to CQG as a GWDAW-10 Conference Proceedings, 9 pages, 5
figures, Published Versio
Time-frequency analysis of extreme-mass-ratio inspiral signals in mock LISA data
Extreme-mass-ratio inspirals (EMRIs) of ~ 1-10 solar-mass compact objects
into ~ million solar-mass massive black holes can serve as excellent probes of
strong-field general relativity. The Laser Interferometer Space Antenna (LISA)
is expected to detect gravitational wave signals from apprxomiately one hundred
EMRIs per year, but the data analysis of EMRI signals poses a unique set of
challenges due to their long duration and the extensive parameter space of
possible signals. One possible approach is to carry out a search for EMRI
tracks in the time-frequency domain. We have applied a time-frequency search to
the data from the Mock LISA Data Challenge (MLDC) with promising results. Our
analysis used the Hierarchical Algorithm for Clusters and Ridges to identify
tracks in the time-frequency spectrogram corresponding to EMRI sources. We then
estimated the EMRI source parameters from these tracks. In these proceedings,
we discuss the results of this analysis of the MLDC round 1.3 data.Comment: Amaldi-7 conference proceedings; requires jpconf style file
Vortex annihilation in the ordering kinetics of the O(2) model
The vortex-vortex and vortex-antivortex correlation functions are determined
for the two-dimensional O(2) model undergoing phase ordering. We find
reasonably good agreement with simulation results for the vortex-vortex
correlation function where there is a short-scaled distance depletion zone due
to the repulsion of like-signed vortices. The vortex-antivortex correlation
function agrees well with simulation results for intermediate and long-scaled
distances. At short-scaled distances the simulations show a depletion zone not
seen in the theory.Comment: 28 pages, REVTeX, submitted to Phys. Rev.
Discrete Model of Ideological Struggle Accounting for Migration
A discrete in time model of ideological competition is formulated taking into
account population migration. The model is based on interactions between global
populations of non-believers and followers of different ideologies. The complex
dynamics of the attracting manifolds is investigated.
Conversion from one ideology to another by means of (i) mass media influence
and (ii) interpersonal relations is considered. Moreover a different birth rate
is assumed for different ideologies, the rate being assumed to be positive for
the reference population, made of initially non-believers. Ideological
competition can happen in one or several regions in space. In the latter case,
migration of non-believers and adepts is allowed; this leads to an enrichment
of the ideological dynamics. Finally, the current ideological situation in the
Arab countries and China is commented upon from the point of view of the
presently developed mathematical model. The massive forced conversion by
Ottoman Turks in the Balkans is briefly discussed.Comment: 24 pages, with 5 figures and 52 refs.; prepared for a Special issue
of Advances in Complex System
Phase ordering in bulk uniaxial nematic liquid crystals
The phase-ordering kinetics of a bulk uniaxial nematic liquid crystal is
addressed using techniques that have been successfully applied to describe
ordering in the O(n) model. The method involves constructing an appropriate
mapping between the order-parameter tensor and a Gaussian auxiliary field. The
mapping accounts both for the geometry of the director about the dominant
charge 1/2 string defects and biaxiality near the string cores. At late-times t
following a quench, there exists a scaling regime where the bulk nematic liquid
crystal and the three-dimensional O(2) model are found to be isomorphic, within
the Gaussian approximation. As a consequence, the scaling function for
order-parameter correlations in the nematic liquid crystal is exactly that of
the O(2) model, and the length characteristic of the strings grows as
. These results are in accord with experiment and simulation. Related
models dealing with thin films and monopole defects in the bulk are presented
and discussed.Comment: 21 pages, 3 figures, REVTeX, submitted to Phys. Rev.
Extracting galactic binary signals from the first round of Mock LISA Data Challenges
We report on the performance of an end-to-end Bayesian analysis pipeline for
detecting and characterizing galactic binary signals in simulated LISA data.
Our principal analysis tool is the Blocked-Annealed Metropolis Hasting (BAM)
algorithm, which has been optimized to search for tens of thousands of
overlapping signals across the LISA band. The BAM algorithm employs Bayesian
model selection to determine the number of resolvable sources, and provides
posterior distribution functions for all the model parameters. The BAM
algorithm performed almost flawlessly on all the Round 1 Mock LISA Data
Challenge data sets, including those with many highly overlapping sources. The
only misses were later traced to a coding error that affected high frequency
sources. In addition to the BAM algorithm we also successfully tested a Genetic
Algorithm (GA), but only on data sets with isolated signals as the GA has yet
to be optimized to handle large numbers of overlapping signals.Comment: 13 pages, 4 figures, submitted to Proceedings of GWDAW-11 (Berlin,
Dec. '06
Incorporating prior knowledge improves detection of differences in bacterial growth rate
BACKGROUND: Robust statistical detection of differences in the bacterial growth rate can be challenging, particularly when dealing with small differences or noisy data. The Bayesian approach provides a consistent framework for inferring model parameters and comparing hypotheses. The method captures the full uncertainty of parameter values, whilst making effective use of prior knowledge about a given system to improve estimation. RESULTS: We demonstrated the application of Bayesian analysis to bacterial growth curve comparison. Following extensive testing of the method, the analysis was applied to the large dataset of bacterial responses which are freely available at the web-resource, ComBase. Detection was found to be improved by using prior knowledge from clusters of previously analysed experimental results at similar environmental conditions. A comparison was also made to a more traditional statistical testing method, the F-test, and Bayesian analysis was found to perform more conclusively and to be capable of attributing significance to more subtle differences in growth rate. CONCLUSIONS: We have demonstrated that by making use of existing experimental knowledge, it is possible to significantly improve detection of differences in bacterial growth rate
Optimal statistic for detecting gravitational wave signals from binary inspirals with LISA
A binary compact object early in its inspiral phase will be picked up by its
nearly monochromatic gravitational radiation by LISA. But even this innocuous
appearing candidate poses interesting detection challenges. The data that will
be scanned for such sources will be a set of three functions of LISA's twelve
data streams obtained through time-delay interferometry, which is necessary to
cancel the noise contributions from laser-frequency fluctuations and
optical-bench motions to these data streams. We call these three functions
pseudo-detectors. The sensitivity of any pseudo-detector to a given sky
position is a function of LISA's orbital position. Moreover, at a given point
in LISA's orbit, each pseudo-detector has a different sensitivity to the same
sky position. In this work, we obtain the optimal statistic for detecting
gravitational wave signals, such as from compact binaries early in their
inspiral stage, in LISA data. We also present how the sensitivity of LISA,
defined by this optimal statistic, varies as a function of sky position and
LISA's orbital location. Finally, we show how a real-time search for inspiral
signals can be implemented on the LISA data by constructing a bank of templates
in the sky positions.Comment: 22 pages, 15 eps figures, Latex, uses iopart style/class files. Based
on talk given at the 8th Gravitational Wave Data Analysis Workshop,
Milwaukee, USA, December 17-20, 2003. Accepted for publication in Class.
Quant. Gra
- …