117 research outputs found

    Development of a Multi-material Stereolithography System

    Get PDF
    Researchers continue to explore possibilities for expanding additive manufacturing (AM) technologies into direct product manufacturing. One limitation is in the materials available for use in AM that can meet the needs of end-use applications. Stereolithography (SL) is an AM technology well known for its precision and high quality surface finish capabilities. SL builds parts by selectively crosslinking or solidifying photo-curable liquid resins, and the resin industry has been continuously developing new resins with improved performance characteristics. This paper introduces a unique SL machine that can fabricate parts out of multiple SL materials. The technology is based on using multiple vats positioned on a rotating vat carousel that contain different photo-curable materials. To change the material during the process, the build platform is raised out of the current vat, a new vat with a different material is rotated under the platform, and the platform is submerged into the new vat so that the new material can be used. This paper introduces a new vat exchange mechanism, cleaning process, recoating process, resin leveling mechanism and process planning technologies for the implementation of multiple material SL. An overview of the system framework is provided and the system integration and control software is described. In addition, several multiple material test parts are designed, fabricated, and described

    In Vitro Validation of Finite-Element Model of AAA Hemodynamics Incorporating Realistic Outlet Boundary Conditions

    Get PDF
    The purpose of this study is to validate numerical simulations of flow and pressure in an abdominal aortic aneurysm (AAA) using phase-contrast magnetic resonance imaging (PCMRI) and an in vitro phantom under physiological flow and pressure conditions. We constructed a two-outlet physical flow phantom based on patient imaging data of an AAA and developed a physical Windkessel model to use as outlet boundary conditions. We then acquired PCMRI data in the phantom while it operated under conditions mimicking a resting and a light exercise physiological state. Next, we performed in silico numerical simulations and compared experimentally measured velocities, flows, and pressures in the in vitro phantom to those computed in the in silico simulations. There was a high degree of agreement in all of the pressure and flow waveform shapes and magnitudes between the experimental measurements and simulated results. The average pressures and flow split difference between experiment and simulation were all within 2%. Velocity patterns showed good agreement between experimental measurements and simulated results, especially in the case of whole-cycle averaged comparisons. We demonstrated methods to perform in vitro phantom experiments with physiological flows and pressures, showing good agreement between numerically simulated and experimentally measured velocity fields and pressure waveforms in a complex patient-specific AAA geometry

    \u3ci\u3eIn Vitro\u3c/i\u3e Validation of Finite Element Analysis of Blood Flow in Deformable Models

    Get PDF
    The purpose of this article is to validate numerical simulations of flow and pressure incorporating deformable walls using in vitro flow phantoms under physiological flow and pressure conditions. We constructed two deformable flow phantoms mimicking a normal and a restricted thoracic aorta, and used a Windkessel model at the outlet boundary. We acquired flow and pressure data in the phantom while it operated under physiological conditions. Next, in silico numerical simulations were performed, and velocities, flows, and pressures in the in silico simulations were compared to those measured in the in vitro phantoms. The experimental measurements and simulated results of pressure and flow waveform shapes and magnitudes compared favorably at all of the different measurement locations in the two deformable phantoms. The average difference between measured and simulated flow and pressure was approximately 3.5 cc/s (13% of mean) and 1.5 mmHg (1.8% of mean), respectively. Velocity patterns also showed good qualitative agreement between experiment and simulation especially in regions with less complex flow patterns. We demonstrated the capabilities of numerical simulations incorporating deformable walls to capture both the vessel wall motion and wave propagation by accurately predicting the changes in the flow and pressure waveforms at various locations down the length of the deformable flow phantoms

    Next Generation Orthopaedic Implants by Additive Manufacturing Using Electron Beam Melting

    Get PDF
    This paper presents some examples of knee and hip implant components containing porous structures and fabricated in monolithic forms utilizing electron beam melting (EBM). In addition, utilizing stiffness or relative stiffness versus relative density design plots for open-cellular structures (mesh and foam components) of Ti-6Al-4V and Co-29Cr-6Mo alloy fabricated by EBM, it is demonstrated that stiffness-compatible implants can be fabricated for optimal stress shielding for bone regimes as well as bone cell ingrowth. Implications for the fabrication of patient-specific, monolithic, multifunctional orthopaedic implants using EBM are described along with microstructures and mechanical properties characteristic of both Ti-6Al-4V and Co-29Cr-6Mo alloy prototypes, including both solid and open-cellular prototypes manufactured by additive manufacturing (AM) using EBM

    Fabrication of Metal and Alloy Components by Additive Manufacturing: Examples of 3D Materials Science

    Get PDF
    ObjectiveThis paper provides a brief review of relatively new additive manufacturing technologies for the fabrication of unusual and complex metal and alloy products by laser and electron beam melting. A number of process features and product microstructures are illustrated utilizing 3D optical and transmission electron microscope image compositions representing examples of 3D materials science.MethodsProcessing methods involving electron beam melting (EBM) and a process referred to as direct metal laser sintering (DMLS), often called selective laser melting (SLM) are described along with the use of light (optical) microscopy (OM), transmission electron microscopy (TEM), and X-ray diffraction (XRD) to elucidate microstructural phenomena.ResultsExamples of EBM and SLM studies are presented in 3D image compositions. These include EBM of Ti-6Al-4V, Cu, Co-base superalloy and Inconel 625; and SLM of 17-4 PH stainless steel, Inconel 718 and Inconel 625.Conclusions3D image compositions constituting 3D materials science provide effective visualization for directional solidification-related phenomena associated with the EBM and SLM fabrication of a range of metals and alloys, especially microstructures and microstructural architectures

    A specific insertion of a solo-LTR characterizes the Y-chromosome of Bryonia dioica (Cucurbitaceae)

    Get PDF
    Background: Relatively few species of flowering plants are dioecious and even fewer are known to have sex chromosomes. Current theory posits that homomorphic sex chromosomes, such as found in Bryonia dioica (Cucurbitaceae), offer insight into the early stages in the evolution of sex chromosomes from autosomes. Little is known about these early steps, but an accumulation of transposable element sequences has been observed on the Ychromosomes of some species with heteromorphic sex chromosomes. Recombination, by which transposable elements are removed, is suppressed on at least part of the emerging Y-chromosome, and this may explain the correlation between the emergence of sex chromosomes and transposable element enrichment. Findings: We sequenced 2321 bp of the Y-chromosome in Bryonia dioica that flank a male-linked marker, BdY1, reported previously. Within this region, which should be suppressed for recombination, we observed a solo-LTR nested in a Copia-like transposable element. We also found other, presumably paralogous, solo-LTRs in a consensus sequence of the underlying Copia-like transposable element. Conclusions: Given that solo-LTRs arise via recombination events, it is noteworthy that we find one in a genomic region where recombination should be suppressed. Although the solo-LTR could have arisen before recombination was suppressed, creating the male-linked marker BdY1, our previous study on B. dioica suggested that BdY1 may not lie in the recombination-suppressed region of the Y-chromosome in all populations. Presence of a solo-LTR near BdY1 therefore fits with the observed correlation between retrotransposon accumulation and the suppression of recombination early in the evolution of sex chromosomes. These findings further suggest that the homomorphic sex chromosomes of B. dioica, the first organism for which genetic XY sex-determination was inferred, are evolutionarily young and offer reference information for comparative studies of other plant sex chromosomes

    Location analysis for the estrogen receptor-Ī± reveals binding to diverse ERE sequences and widespread binding within repetitive DNA elements

    Get PDF
    Location analysis for estrogen receptor-Ī± (ERĪ±)-bound cis-regulatory elements was determined in MCF7 cells using chromatin immunoprecipitation (ChIP)-on-chip. Here, we present the estrogen response element (ERE) sequences that were identified at ERĪ±-bound loci and quantify the incidence of ERE sequences under two stringencies of detection: <10% and 10ā€“20% nucleotide deviation from the canonical ERE sequence. We demonstrate that āˆ¼50% of all ERĪ±-bound loci do not have a discernable ERE and show that most ERĪ±-bound EREs are not perfect consensus EREs. Approximately one-third of all ERĪ±-bound ERE sequences reside within repetitive DNA sequences, most commonly of the AluS family. In addition, the 3-bp spacer between the inverted ERE half-sites, rather than being random nucleotides, is C(A/T)G-enriched at bona fide receptor targets. Diverse ERĪ±-bound loci were validated using electrophoretic mobility shift assay and ChIP-polymerase chain reaction (PCR). The functional significance of receptor-bound loci was demonstrated using luciferase reporter assays which proved that repetitive element ERE sequences contribute to enhancer function. ChIP-PCR demonstrated estrogen-dependent recruitment of the coactivator SRC3 to these loci in vivo. Our data demonstrate that ERĪ± binds to widely variant EREs with less sequence specificity than had previously been suspected and that binding at repetitive and nonrepetitive genomic targets is favored by specific trinucleotide spacers
    • ā€¦
    corecore