5,377 research outputs found

    Comparing verbal media for alarm handling: Speech versus textual displays

    Get PDF
    The rise of computers in command and control domains has meant that control operations can be performed via desk-based visual display terminals. This trend has also produced the potential to display information to operators in a variety of formats. Of particular interest has been the use of text-based displays for alarm presentation. There are possible limitations to the use of text for alarm presentation, not least of which is the need for a dedicated alarms display screen (or, at least, a display page). Given the capability of computers to synthesize speech, it is possible that speech-based alarms could generate the same information as text-based displays without the need for dedicated screen space. In this paper an experimental comparison of speech-based and text-based displays for presentation of alarms is reported. The findings show that speech leads to longer response times than text displays, but that it has minimal effect on the efficacy of fault handling. The results are discussed within the alarm initiated activities framework and implications for alarm system design are outlined

    Attention and automation: New perspectives on mental underload and performance

    Get PDF
    There is considerable evidence in the ergonomics literature that automation can significantly reduce operator mental workload. Furthermore, reducing mental workload is not necessarily a good thing, particularly in cases where the level is already manageable. This raises the issue of mental underload, which can be at least as detrimental to performance as overload. However, although it is widely recognized that mental underload is detrimental to performance, there are very few attempts to explain why this may be the case. It is argued in this paper that, until the need for a human operator is completely eliminated, automation has psychological implications relevant in both theoretical and applied domains. The present paper reviews theories of attention, as well as the literature on mental workload and automation, to synthesize a new explanation for the effects of mental underload on performance. Malleable attentional resources theory proposes that attentional capacity shrinks to accommodate reductions in mental workload, and that this shrinkage is responsible for the underload effect. The theory is discussed with respect to the applied implications for ergonomics research

    Telephone conversation impairs sustained visual attention via a central bottleneck

    Get PDF
    Recent research has shown that holding telephone conversations disrupts one's driving ability. We asked whether this effect could be attributed to a visual attention impairment. In Experiment 1, participants conversed on a telephone or listened to a narrative while engaged in multiple object tracking (MOT), a task requiring sustained visual attention. We found that MOT was disrupted in the telephone conversation condition, relative to single-task MOT performance, but that listening to a narrative had no effect. In Experiment 2, we asked which component of conversation might be interfering with MOT performance. We replicated the conversation and single-task conditions of Experiment 1 and added two conditions in which participants heard a sequence of words over a telephone. In the shadowing condition, participants simply repeated each word in the sequence. In the generation condition, participants were asked to generate a new word based on each word in the sequence. Word generation interfered with MOT performance, but shadowing did not. The data indicate that telephone conversation disrupts attention at a central stage, the act of generating verbal stimuli, rather than at a peripheral stage, such as listening or speaking

    Innovative Piloting Technique for a Semi-Autonomous UAV Lighter-Than-Air Platform Simulator

    Get PDF
    UAS design has in these years reached a point in which trends and objectives are well beyond the actual test capabilities. The tendency of the past to build and test has clearly been overridden by new design concepts for many reasons, one of these being the scarce or null possibility of testing safety-critical systems such as UAV systems. This is the context in which the Elettra-Twin-Flyer (ETF) Simulator is constantly upgraded and rearranged to incorporate new features and more advanced capabilities. In this paper it is shown how the piloting modes have been differentiated, to improve the airship autonomy and allow path following operations. Innovative piloting tools have been introduced and a new Human-Machine-Interface has been proposed along

    Driver behaviour with adaptive cruise control

    Get PDF
    This paper reports on the evaluation of adaptive cruise control (ACC) from a psychological perspective. It was anticipated that ACC would have an effect upon the psychology of driving, i.e. make the driver feel like they have less control, reduce the level of trust in the vehicle, make drivers less situationally aware, but workload might be reduced and driving might be less stressful. Drivers were asked to drive in a driving simulator under manual and ACC conditions. Analysis of variance techniques were used to determine the effects of workload (i.e. amount of traffic) and feedback (i.e. degree of information from the ACC system) on the psychological variables measured (i.e. locus of control, trust, workload, stress, mental models and situation awareness). The results showed that: locus of control and trust were unaffected by ACC, whereas situation awareness, workload and stress were reduced by ACC. Ways of improving situation awareness could include cues to help the driver predict vehicle trajectory and identify conflicts

    Measuring the effect of Think Aloud Protocols on workload using fNIRS

    Get PDF
    The Think Aloud Protocol (TAP) is a verbalisation technique widely employed in HCI user studies to give insight into user experience, yet little work has explored the impact that TAPs have on participants during user studies. This paper utilises a brain sensing technique, fNIRS, to observe the effect that TAPs have on participants. Functional Near-Infrared Spectroscopy (fNIRS) is a brain sensing technology that offers the potential to provide continuous, detailed insight into brain activity, enabling an objective view of cognitive processes during complex tasks. Participants were asked to perform a mathematical task under 4 conditions: nonsense verbalisations, passive concurrent think aloud protocol, invasive concurrent think aloud protocol, and a baseline of silence. Subjective ratings and performance measures were collected during the study. Our results provide a novel view into the effect that different forms of verbalisation have on workload during tasks. Further, the results provide a means for estimating the effect of spoken artefacts when measuring workload, which is another step towards our goal of proactively involving fNIRS analysis in ecologically valid user studies

    Symmetric and asymmetric action integration during cooperative object manipulation in virtual environments

    Get PDF
    Cooperation between multiple users in a virtual environment (VE) can take place at one of three levels. These are defined as where users can perceive each other (Level 1), individually change the scene (Level 2), or simultaneously act on and manipulate the same object (Level 3). Despite representing the highest level of cooperation, multi-user object manipulation has rarely been studied. This paper describes a behavioral experiment in which the piano movers' problem (maneuvering a large object through a restricted space) was used to investigate object manipulation by pairs of participants in a VE. Participants' interactions with the object were integrated together either symmetrically or asymmetrically. The former only allowed the common component of participants' actions to take place, but the latter used the mean. Symmetric action integration was superior for sections of the task when both participants had to perform similar actions, but if participants had to move in different ways (e.g., one maneuvering themselves through a narrow opening while the other traveled down a wide corridor) then asymmetric integration was superior. With both forms of integration, the extent to which participants coordinated their actions was poor and this led to a substantial cooperation overhead (the reduction in performance caused by having to cooperate with another person)

    Diurnal Variation in Forage Nutrient Composition and Metabolic Parameters of Horses Grazing Warm-Season, Perennial Grass-Legume Mixed Pastures

    Get PDF
    Although warm-season, grass-legume mixed pastures have improved nutritive value and may reduce negative environmental impacts relative to nitrogen-fertilized grass monocultures, no study has been done to evaluate their effect on diurnal variation of non-structural carbohydrates (NSC) and other nutrients, and on the metabolic responses observed in horses’ blood and fecal samples. This 2-yr study aimed to investigate the circadian variation in nutrient composition and the fecal and blood metabolic responses in horses grazing these pastures. Forage, fecal, and blood samples were collected every 28 days at 0600, 1200, 1800, and 0000 h, in two years, for measurement of diurnal variation in forage nutrient composition and fecal and blood metabolites. Forage nutrient composition was affected by time of the day, with digestible energy (DE) and NSC increasing at 1800 h, crude protein decreasing after 1200 h and the fiber components increasing at 1200 h. Fecal lactate and blood insulin were also affected by time of the day. Fecal lactate increased from 0600 to 1200 h. Insulin levels were greater at 1800 than at 0600 h. The increased insulin level followed the increased concentration of NSC in the forage. In conclusion, warm-season, grass-legume mixed pastures show a diurnal pattern in forage nutrient composition, with increased NSC later in the afternoon. However, the metabolic responses observed in this study were not sufficient to predispose horses to metabolic dysregulation. The results also indicate that restricting grazing to the morning may reduce the forage nutritive value, with decreased concentration of DE and increased concentrations of the fiber components, which may decrease diet digestibility

    Herbage Responses and Performance of Mature Horses Grazing Warm-Season Perennial Grass-Legume Mixed Pastures

    Get PDF
    Legume-grass mixtures may be a useful alternative to nitrogen-fertilized grass monocultures, but pasture and animal responses have not been assessed for pastures grazed by horses in Florida. This 2-yr study compared pasture and horse responses of continuously stocked, mixed pastures of rhizoma peanut (RP, Arachis glabrata Benth) and bahiagrass (BG, Paspalum notatum FlĂŒggĂ©) receiving 30 kg nitrogen (N)/ha (RP-BG) compared with BG pastures fertilized with 120 kg/N ha (BG-N) or with no N (BG-No N). Herbage mass was similar among treatments in 2020 and for most evaluation days in 2019. In 2019, stocking rate (AU/ha) was greater in BG-N (3.9) than in RP-BG (3.7) and BG-No N (3.1). In 2020, BG-No N (2.6) had the lesser stocking rate compared with BG-N (2.9) and RP-BG (2.9), with RP-BG not differing from BG-N. Herbage crude protein (CP) and digestible energy were similar across treatments in 2020, but they were greater for BG-N and RP-BG than BG-No N at some evaluation days in 2019. Except for CP, treatment did not affect nutrient digestibility by horses. Digestibility of CP was greatest for RP-BG in the late season. In the RP-BG treatment, proportion of RP in the pasture (~29%) was not affected by sampling date, and RP comprised 18.4% of the diet. Nonetheless, no differences were observed among treatments for body weight and condition score. The results indicate that intercropping legumes into warm-season perennial pastures can improve some measures of nutritive value and maintain horses’ body condition with similar stocking rate as N-fertilized bahiagrass pastures, while contributing to development of sustainable grazing systems for horses with reduced off-farm nitrogen inputs

    The design-by-adaptation approach to universal access: learning from videogame technology

    Get PDF
    This paper proposes an alternative approach to the design of universally accessible interfaces to that provided by formal design frameworks applied ab initio to the development of new software. This approach, design-byadaptation, involves the transfer of interface technology and/or design principles from one application domain to another, in situations where the recipient domain is similar to the host domain in terms of modelled systems, tasks and users. Using the example of interaction in 3D virtual environments, the paper explores how principles underlying the design of videogame interfaces may be applied to a broad family of visualization and analysis software which handles geographical data (virtual geographic environments, or VGEs). One of the motivations behind the current study is that VGE technology lags some way behind videogame technology in the modelling of 3D environments, and has a less-developed track record in providing the variety of interaction methods needed to undertake varied tasks in 3D virtual worlds by users with varied levels of experience. The current analysis extracted a set of interaction principles from videogames which were used to devise a set of 3D task interfaces that have been implemented in a prototype VGE for formal evaluation
    • 

    corecore