40 research outputs found

    Propeller performance and weight predictions appended to the Navy/NASA engine program

    Get PDF
    The Navy/NASA Engine Performance (NNEP) is a general purpose computer program currently employed by government, industry and university personnel to simulate the thermodynamic cycles of turbine engines. NNEP is a modular program which has the ability to evaluate the performance of an arbitrary engine configuration defined by the user. In 1979, a program to calculate engine weight (WATE-2) was developed by Boeing's Military Division under NASA contract. This program uses a preliminary design approach to determine engine weights and dimensions. Because the thermodynamic and configuration information required by the weight code was available in NNEP, the weight code was appended to NNEP. Due to increased emphasis on fuel economy, a renewed interest has developed in propellers. This report describes the modifications developed by NASA to both NNEP and WATE-2 to determine the performance, weight and dimensions of propellers and the corresponding gearbox. The propeller performance model has three options, two of which are based on propeller map interpolation. Propeller and gearbox weights are obtained from empirical equations which may easily be modified by the user

    Electromechanical finite element modelling for dynamic analysis of a cantilevered piezoelectric energy harvester with tip mass offset under base excitations

    Get PDF
    A new electromechanical finite element modelling of a vibration power harvester and its validation with experimental studies are presented in this paper. The new contributions for modelling the electromechanical finite element piezoelectric unimorph beam with tip mass offset under base excitation encompass five major solution techniques. These include the electromechanical discretization, kinematic equations, coupled field equations, Lagrangian electromechanical dynamic equations, and orthonormalised global matrix and scalar forms of electromechanical finite element dynamic equations. Such techniques have not been rigorously modelled previously by other researchers. There are also benefits to presenting the numerical techniques proposed in this paper. First, the proposed numerical techniques can be used for Q1 applications in many different geometrical models, including MEMS power harvesting devices. Second, applying tip mass offset located after the end of the piezoelectric beam length can result in a very practical design, which avoids direct contact with piezoelectric material because of its brittle nature.Since the surfaces of actual piezoelectric material are covered evenly with thin conducting electrodes for generating single voltage, we introduce the new electromechanical discretization, consisting of the mechanical and electrical discretised elements. Moreover, the reduced electromechanical finite element dynamic equations can be further formulated to obtain the series form of new multimode electromechanical frequency response functions (FRFs) of the displacement, velocity, voltage, current, and power, including optimal power harvesting. The normalized numerical strain node and eigenmode shapes are also further formulated using numerical discretization. Finally, the parametric numerical case studies of the piezoelectric unimorph beam under a resistive shunt circuit show good agreement with the experimental studies
    corecore