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Abstract. A new electromechanical finite element modelling of a vibration power harvester 

and its validation with experimental studies are presented. The new contributions for 

modelling of the electromechanical finite element piezoelectric unimorph beam with tip mass 

offset under base excitation encompass five major solution techniques. These include the 

electromechanical discretisation, kinematic equations, coupled field equations, Lagrangian 

electromechanical dynamic equations and orthonormalised global matrix and scalar forms of 

electromechanical finite element dynamic equations. Such techniques have not been rigorously 

modelled previously from other researchers. There are also benefits in presenting the proposed 

numerical techniques. First, the proposed numerical techniques can be used for applications in 

many different geometrical models including MEMS power harvesting devices. Second, 

applying tip mass offset located after the end of the piezoelectric beam length can give a very 

practical design in order to avoid the direct contact of piezoelectric material because of its 

brittle nature. Since the surfaces of actual piezoelectric material are covered evenly with thin 

conducting electrodes for generating the single voltage, the new electromechanical 

discretisation consisting of the mechanical and electrical discretised elements is introduced. 

Moreover, the reduced electromechanical finite element dynamic equations can be further 

formulated to obtain the series form of new multimode electromechanical frequency response 

functions (FRFs) of the displacement, velocity, voltage, current and power including optimal 

power harvesting. The normalised numerical strain node and eigenmode shapes are also 

further formulated using numerical discretisation. Finally, the parametric numerical case 

studies of the piezoelectric unimorph beam under resistive shunt circuit show good agreement 

with the experimental studies. 

Keyword: electromechanical discretisation, finite element, MEMS, piezoelectric, power 

harvesting, smart sensor, strain node, vibration. 
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1. Introduction 

Recently, piezoelectric power harvesting device has shown the viability for converting mechanical 

energy into useful electrical energy that can be used to power remote smart wireless sensor systems. 

The applications include the monitoring of intelligent infrastructure, aircraft and environmental 

monitoring systems and biosensors for the human body. As a profound alternative energy source, a 

few published literature reviews [1]-[7] have discussed the piezoelectric vibration-based power 

harvester applications from macro-to-micro levels as giving the benefit to researchers for 

investigating further novel techniques. To design self-charging and lifespan energy harvesting 

devices, it requires the technical knowledge for understanding the mechanical and electrical tuning 

techniques, material or physical properties, mechanical energy sources, power conditioning electronic 

circuits, sensor systems and miniature fabrication. However, before conducting a manufacturing 

process for these smart devices in such conditions, initial mathematical models using analytical and 

numerical techniques become an important aspect for analysing the electromechanical piezoelectric 

vibration power harvesting response behaviours. Consequently, the development of new concepts has 

spurred the attention from some researchers. Starting with the simplified analytical lumped parameter 

models of piezoelectric structures [8]-[10], the electrical equivalent systems representing the 

electromechanical piezoelectric component and standard circuit interface were developed. 

Considering the required accuracy, and the necessity to model the cantilevered piezoelectric power 

harvester with tip mass under base excitation, the development of analytical approaches using 

Rayleigh-Ritz methods were explored to analyse various parametric case studies for vibration power 

harvesters [11]-[13]. Kim et al [14] investigated the vibrational piezoelectric bimorph power harvester 

with the effects of tip mass offset using the Rayleigh–Ritz's method. Their interest and focus were to 

model the system responses of short and open circuit resonance frequency with variable load 

resistances using tip mass configuration. Moreover, Erturk [15] further developed comprehensive 

analytical approaches using assumed-mode methods for Euler-Bernoulli, Rayleigh, and Timoshenko 

piezoelectric beams with axial deformations. It was proved that by increasing certain number of 

modes in the choice of admissible trial functions, the approximation solution converges to the 

analytical solution, especially for the fundamental resonance frequency response. Research endeavour 

focusing on the closed-form distributed parameter system of Euler-Bernoulli bimorph beam for 

investigating the FRFs under variable load resistance has been investigated by Erturk and Inman [16]. 

Wickenheiser and Garcia [17] further developed the analytical modelling of piezoelectric bimorph 

beam with magnetic tip mass located near to the fixed ferromagnetic structures in order to magnify 

the driving frequency below the fundamental frequency of the system. Moreover, development of the 

piezoelectric bimorph beam with tip mass under multidirectional excitation and under the strain field 

effects of the transverse and initial longitudinal forms have been explored by Lumentut and Howard 
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[18]-[20] to investigate a broad range of case studies using mathematical studies of the 

orthonormalised electromechanical weak-form technique and closed-form boundary value method. In 

scrutinising the system response of the single piezoelectric beam given the previous literatures, the 

typical optimal power output mostly depends on the first mode. For this case, Lumentut et al [21] 

investigated the strategy of increasing power output and widening multifrequency band using the 

orthonormalised multielectromechanical dynamic equations reduced from the closed-form boundary 

value methods. Various parametric case studies have been developed using new electromechanical 

multimode FRFs of multiple piezoelectric bimorph beams connected in the series, parallel, and mixed 

series-parallel connections.  

 

The following finite element literatures concern the use of piezoelectric components as smart material 

systems and have shown a variety of engineering applications, most notable of which has been 

devoted to ultrasonic transducers and active control systems either with feedback gain control or 

sensing and actuation response systems. For the current research, these piezoelectric finite element 

models, however, give the relevancy and basis that allow the development of the new numerical 

techniques for modelling the electromechanical power harvester as presented in this paper. In the 

ultrasonic transducer application, Allik and Hughes [22] and Allik et al [23] first introduced 

mathematical models of the linear constitutive equations of the three dimensional finite element 

piezoelectric vibration model using variational methods. Later on, comprehensive mechanical 

discretised elements for analysing an ultrasonic piezoelectric rod resonator [24] and the 

phenomenological electro-acoustic modelling for ultrasonic probes [25] were developed. Further 

application of the piezoelectric finite element has been developed for the active dynamic control 

system using the feedback gain control. Tzou and Tseng [26] developed the active dynamic control 

matrix equations of the distributed piezoelectric components onto plate structures using the 

Hamiltonian principle and Guyan reduction technique. Other published research works for analysing 

the controlled transient response [27]-[29] and transfer function [30] behaviours have been further 

investigated using the negative velocity feedback control system. For sensing and actuation response 

systems, the actuation system response using applied voltage into the piezoelectric actuator activated 

the piezoelectric sensor to create voltage output and deformation of the laminated composite 

structures [31]-[33]. More recently, the shunted electrical circuit connected to the piezoelectric 

patches has been formulated by Thomas et al [34] using finite element control system of the beam 

structure. Since the actual piezoelectric components are covered with electrode layers, most notably 

the piezoelectric finite element literatures ignore the electrode effect by taking the assumption that the 

electrical voltages for each element and nodes are independent. Only a few of the published papers 

related to the control finite element modelling have taken into consideration of the electrode effect by 
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assuming equal voltage distribution on each piezoelectric element [29 31, 34]. However, the previous 

works are only based on the mechanical discretisation without considering the electrical discretised 

elements due to the effect of electrode layers. Ignoring the electrical discretised elements from the 

electrode layer can affect the electromechanical FRF of the piezoelectric power harvester using the 

closed circuit system. Also, there are no other previous research works for investigating the 

electromechanical finite element frequency responses using the electromechanical discretised 

elements under base excitation. 

In the earlier studies of the electromechanical finite element response of piezoelectric power 

harvesting, Lumentut et al [35] initially developed an energy harvesting plate structure with the 

segmented piezoelectric element based on the Love-Kirchhoff plate theory for investigating the 

frequency and transient response behaviours. However, at the earlier stage, this model only considers 

the voltage output from the piezoelectric element without including the electrode effect with complete 

derivation of the electromechanical discretisation related to the system response. Later on, DeMarqui 

et al [36] further presented the cantilevered plate with the distributed piezoelectric layers by including 

the electrode effect as validated with the existing literature of the piezoelectric bimorph with tip mass 

presented by Erturk and Inman [16]. However, their proposed finite element model does not take into 

account the important physical issues of the electromechanical orthonormalised global matrix and 

scalar forms and the mathematical techniques of electromechanical discretisation. Aladwani et al [37] 

conducted further investigation of the dynamic magnifier using a spring system attached at the base 

structure of the cantilevered piezoelectric bimorph beam with tip mass. The system was used to model 

the optimised power harvesting frequency response behaviour. However, their proposed work 

neglects the electrode effect of the piezoelectric component for formulating the electromechanical 

discretised elements and also ignores the offset effect of the tip mass measured between the tip mass 

centroid and the end of the bimorph. Further research effort for investigating piezoelectric power 

harvesters has been developed using solid finite element-based ANSYS multiphysics software. Zhu et 

al [38] investigated prediction of power output FRFs under the resistive shunt circuit. Moreover, 

Yang and Tang [39] developed the electrical equivalent circuit model using SPICE software whose 

circuit parameters were adopted from ANSYS simulation for predicting the power output. However, 

although ANSYS software provides capabilities of three dimensional coupled field solid and plane 

elements, it does not provide the facility for modelling the laminated beam elements. For standard 

level of the energy harvesters, mesh generation using laminated beam elements is sufficient to model 

the laminated piezoelectric beam structures (e.g. unimorph, bimorph and multimorph).  

In this paper, new numerical techniques of the electromechanical finite element vibration power 

harvester using the Euler-Bernoulli unimorph beam model are presented and validated with the 
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experimental studies. The numerical models proposed here provide new technical contributions for 

analysing the interrelationship between coupled field equations, electromechanical discretisation, 

kinematic motions, Lagrangian electromechanical dynamic equations and electromechanical finite 

element equations. These technical contributions provide clear insight of presenting the new 

electromechanical finite element equations for power harvesting applications that can be highlighted 

in the following points. 

 In considering the effect of electrode layers, the new electromechanical discretisation consisting of 

mechanical and electrical discretised elements is introduced to model the electromechanical finite 

element piezoelectric structure. The electromechanical discretised elements provide the important 

basis to formulate the FRFs using new electromechanical finite element dynamic equations. 

 The elemental system dynamics of the piezoelectric unimorph beam including tip mass offset are 

reduced from the kinematic equations. It is found that the effect of the offset distance measured 

from the tip mass centroid and the end of the unimorph beam can result in extra terms into the 

mass matrix and the generalised input dynamic force vector. The benefit of applying the tip mass 

offset located after the end of the piezoelectric length is that  it can provide a very practical MEMS 

power harvester design for any level of scalability. This can also avoid the use of material around 

the end of the piezoelectric length that can readily be damaged because of its brittle nature.  

 The established new electromechanical finite element approach can be used conveniently for 

modelling different levels of scalability including the segmented piezoelectric element coupled 

with substructure and MEMS devices. 

 The proposed numerical techniques also provide a complement to study the laminated 

piezoelectric beam with electrode layers in different applications. 

 Lagrangian electromechanical dynamic equations are developed to formulate constitutive 

elemental matrices of the electromechanical finite element equations. The orthonormalised global 

matrices and global scalar forms can be further reduced to formulate new multimode 

electromechanical FRFs of the displacement, velocity, voltage, current, and power harvesting 

including optimal power harvester. The normalised strain node and eigenmode shapes are 

formulated using discretised elements for convergence studies. Finally, the parametric case studies 

with resistive shunt circuit based on the proposed novel electromechanical finite element and 

experimental validations are also presented and discussed.     

 

2. Coupled field equations of the piezoelectric energy harvester 

Constitutive linear piezoelectric beam equations can be formulated using the tensor electrical enthalpy 

concepts based on the continuum thermodynamics that can be condensed using Voigt’s notation and 
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Einstein’s summation convention [19, 40-42]. The electrical enthalpy of the typical smart material 

with Lead Zirconate Titanate (PZT) can be formulated under adiabatic and isothermal processes as, 

                                       33331331111131
2

1

2

1
EESESSESˆ SE εec,H                         (1) 

Notations of piezoelectric parameters used here are stated in accordance with IEEE standards [43]. 

Here the parameters Ec11 , 31e , Sε33  , 3E , 
1T , and 1S  represent the piezoelectric elastic stiffness at 

constant electric field, piezoelectric coefficient, permittivity under constant strain, electric field, 

stress, and strain, respectively. The parameter 31313333 deεε TS   or ETS cdεε 11
2

313333   is given where 

EE sc 1111 1  and T

33  is the permittivity at constant stress and 
Es11  is the elastic compliance at constant 

electric field. Moreover, the common piezoelectric constant produced from the manufacturing 

company is in the form 31d  where this can be modified by multiplying the plane stress-based elastic 

stiffness at constant electric field to give Ecde 113131  . The electric displacement of the piezoelectric 

element 3D  can be obtained by differentiating equation (1) with respect to E3. This electric 

displacement of piezoelectricity can be formulated as, 

333131

3

3 ES
E

ˆ
D

Sεe
H





                        (2) 

Note that for the convenient purpose in the forthcoming notations, the superscripts 1 and 2 being used 

in the parameters of stress, strain, elastic stiffness, density and cross-sectional area refer to the 

substructure and piezoelectric layers, respectively. Since the piezoelectric unimorph consists of the 

active and inactive layers, the plane stress field from the inactive or substructure layer can also be 

formulated as, 

      1
1

1
11

1
1 ST c                                     (3)  

The piezoelectric stress field can also be formulated by differentiating equation (1) with respect to S1 

to give,  

            
 

   
331

2
1

2
112

1

2
1 ES

S

ˆ
T ec

H





                                             (4) 

Note that alternative derivations of equations (2) and (4) can also be obtained by using the enthalpy 

equation of state in terms of continuum thermopiezoelectricity, Maxwell’s relations and Legendre’s 

transformation [41, 44]. 

 

3. Kinematic equations for elemental beam and arbitrary tip mass offset 

 

In this section, the kinematic motions for a continuous geometrical beam as shown in figure 1 are 

derived from the different configurations at a series of points, resulting in the deformations and 
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velocity of the body. However, the kinematics for the tip mass offset whose motions are solely 

affected by the tip of the beam’s transverse rectilinear  L,tw
tip

abs
  and angular velocity  L,tθ , is a 

rigid-body motion with different configurations that result in extra terms in the kinematic equations. 

In reviewing previous studies, the most recent published papers in the MEMS power harvesters [45-

50] included the tip mass offset without scrutinising the effect of the tip mass offset on the kinematic 

equations. The effect of the offset distance between the tip mass centroid and the end of the beam can 

effectively contribute to the mass matrix and the generalised input dynamic forces as shown in section 

4.3. It is important to note here that the aim of formulating the kinematic equations is to formulate the 

Lagrangian functional energy forms that consist of the kinetic, potential and electrical energies of the 

piezoelectric unimorph with the tip mass as given in the forthcoming section.  
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In figure 1, the undeformed beam under base vector  twbase  moves from the fixed reference frame of 

oXZ to the initial reference frame of 'ZXo' . Since the base vector as the input excitation moves from 

point o  to 'o  at the designated reference frame, the position of point p  also moves to point 'p with 

the same magnitude. As a result, the base vector creates the relative transverse deformation  x,tw  

Figure 1.  Kinematic motions of the beam and arbitrary tip mass offset. 
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measured from point 'p  moving to the final point "p . The absolute displacement  x,twabs  can also be 

obtained from the fixed reference frame of oXZ to the final position. Note that the difference between 

the absolute displacement and the base vector defines the relative deformation. Moreover, the beam 

also carries an arbitrary tip mass offset whose kinematic motions must be considered. The position 

vectors of the tip mass start at point d to the final differential element at point m"  where the resultant 

vectors at points o-d"-g"-m" can be defined. The point of attachment d"  (deformation point at the 

end of the beam) to the tip mass centroid at point g"  can be viewed as the offset of the tip mass. The 

origin of tip mass centroid can be determined from the differential element using the extra position 

vector from points g"  to m" . As mentioned previously, since the tip mass was assumed to be a rigid 

body, its relative motions depend on the tip of the beam’s motion at point d" .  

 

The position vector 
pp''

R  for elemental beam can be defined as, 

  opop''pp'' x,z,t RRR                                         (5) 

where the position vectors  
op''R and 

op
R  can be written as, 

        31 eeR x,tθzx,twx,tθzx abs
op'' cossin 

   , 31 eeR zxop                   (6) 

In simplification of the linear assumption, the small angle     xtxwx,tθ  ,  can be obtained after 

applying Taylor’s theorem to give    x,tθx,tθ sin  and   1cos x,tθ .  As the initial position vector of 

the elemental beam 
op

R  is defined, the position vector 
pp''

R  from equation (5) can be differentiated 

with respect to time to give, 

       
         332 eeeRRR x,twtwzx,tθtzx base

opop''pp''  ,,                       (7) 

It is noted that the absolute velocity vectors for the elemental beam and tip mass can be written as,    

                           3ew x,twtwx,t baseabs
    and        3ew L,twtwL,t base

tip
abs

             (8) 

For the elemental tip mass, the position vector "
R

mm can be formulated as, 

                                   
  gmdgodg"m"d''g"od''mm" x,z,t RRRRRRR                             (9) 

where each position vector can be formulated as, 

      1eR Lod   , 31 eeR cc
dg zx   , 31 eeR mm

gm zx  , 
     31 eeR L,twtwL base

od'' 
     

                              31 ,sin,cos,sin,cos eeR
"" tLθxtLθztLθztLθx cccc

gd                    

                            31 ,sin,cos,sin,cos eeR
"" tLθxtLθztLθztLθx mmmm

mg              (10) 
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Again, the linear system for the small angle     xtLwL,tθ  ,  can be made using Taylor’s theorem 

to give    L,tθL,tθ sin  and   1cos L,tθ . For this case, the velocity of the elemental tip mass can 

be obtained by differentiating equation (9) with respect to time to yield,      

             gmdgodg"m"''g"dod''mm" L,z,t RRRRRRR    

                                1321323 eeeeeee mmccbase xzL,tθxzL,tθL,twtw   .       (11) 

The position vector 
'

R
p'p'

can be specified as the relative displacement with respect to the moving 

base support from reference frame oXZ to o'X'Z'  as, 

            31 eeRRR x,twx,tzθtzx pp'pp''p'p'' ,, .                              (12) 

The elemental beam strain can be obtained by differentiating p'p''
R with respect to x giving the typical 

Euler-Bernoulli Beam theory as,   

 
                    

   
2

2

1
x

x,tw
z

x
S

p'p''









 1eR

 .                                                (13)      

Since the piezoelectric unimorph beam is viewed as the asymmetric structure with different material 

properties and geometrical dimensions, the asymmetric neutral axis [51] must be determined as given 

in appendix A.  

                         

4. Electromechanical finite element vibration modelling of the piezoelectric energy harvester 

In the common practice, the surfaces of actual or physical piezoelectric material available in the 

market are covered evenly with thin conducting electrodes, resulting in the single voltage output 

during dynamic motions. As shown in figure 2(a), the physical structure of the unimorph beam with 

an arbitrary tip mass offset is chosen where it consists of piezoelectric material with conducting 

electrode layer and the substructure. However, in figure 2(b), the electromechanical discretisation 

consisting of mechanical and electrical discretised finite-elements is completely different from the 

physical structure. In this situation, the electromechanical finite element discretisation of the 

piezoelectric structure should be analysed using the generalised multi-output electrical current from 

each element connected with electrical parallel connection. Since the polarisation is proportional to 

the stress field and the stress field is also proportional to the strain field [40, 44, 52], the polarisation P 

and electric field E directions are chosen in the 3-direction (thickness) along the z-axis.  
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4.1. Geometrical analysis of electromechanical element  

 

The first-order Hermite interpolation of the cubic displacement function is chosen here to formulate 

the unknown four degrees of freedom for the two node unimorph beam element [53-55]. The cubic 

displacement function must satisfy the beam theory continuity conditions for the translation and 

rotational displacements for the general location of the elements. It is important to note here that the 

kinematic equations given in section 3 can be used to formulate the local element near to the tip mass 

as shown in figure 3, since the translation and angular velocities of the tip mass rigid body depend on 

the end of the unimorph beam of length, giving a particular insight to formulate the complete 

electromechanical finite element equations.  

 

The first-order Hermite interpolation in terms of the polynomial 
   xΦ 1  and the unknown nodal 

displacement  tui  for the elemental beam can be formulated as,  

        tuxΦx,tw k
i

i k
ki

 


2

1

1

0

1
                                                    (14) 

The property of Hermite polynomials for modelling the translation and rotation at the nodes can be 

formulated in terms of the l-derivatives to give,  

     

 

 
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






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and21for
d

d 1

,l,k

,n,iδδx
x

Φ
klinnl

ki
l

                                         (15) 

(a) 

Figure 2.  Electromechanical model of the unimorph beam with arbitrary tip mass offset under input 

base excitation based on (a) physical system connected electrically with the load resistance and (b) new 

electromechanical finite-element discretisation. 

(b) 
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where xn is the location at n-th node and pqδ  is the Kronecker delta with the property as,  
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Corresponding to equations (15) and (16), the l-th derivatives of  w(x,t) can be written as,  
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or it can be formulated in terms of the unknown nodal displacement forms as,  

                                                    tutuδδt
x

w l

n
i k

k

iklinl

n

l


 

2

1

1

0d

d
                                               (18) 

Note that equation (18) clearly shows certain physical meaning after applying equations (15) and (16), 

giving the nodal displacement forms as a function of time. Corresponding to index notation from 

equation (15), equation (14) can be modified by applying equation (18) to give, 

      t
x

w
xΦx,tw

k

i

k

i k
ki

d

d

 


2

1

1

0

1
                                                        (19) 

Figure 3.  First-order Hermite polynomials for local unimorph element with an arbitrary 

tip mass at arbitrary nodes n-1 and n  based on figure 2: by taking the example for n = 2. 
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To find four terms of first-order Hermite polynomials, the property given from equation (15) can be 

used to identify four elemental boundary conditions for each degree of freedom at the nodes. In such 

condition, the cubic equations with four unknown coefficients for each degree of freedom at the nodes 

can be used and the results of the Hermite polynomials can be formulated after simplifying to give,  

   
32

1
01 231 









 










 


e

e

e

e

L

xx

L

xx
xΦ    ,        

2

1
11 1 









 


e

e
e

L

xx
xxxΦ   

   
32

1
02 23 









 










 


e

e

e

e

L

xx

L

xx
xΦ      ,         













 










 


e

e

e

e
e

L

xx

L

xx
xxxΦ

2

1
12   

eee xxL  1                                                                (20) 

Corresponding to equation (14), the simplified first-order Hermite interpolation function of the 

unimorph beam can be modified into a matrix form to give, 

     txx,t ee
uΦw                                         (21) 

where 

              xΦxΦxΦxΦxe
4321Φ                                      

    Te uuuut 4321u                                           (22)    

        

Each parameter from equation (22) can be written in terms of the elemental displacement vector u and 

shape function Φ for each node as,  

               twtutu 1
0

11   ,         tθtutu 1
1

12   ,        twtutu 2
0

23   ,        tθtutu 2
1

24   

    xΦxΦ 1
011  ,      xΦxΦ 1

112  ,      xΦxΦ 1
023  ,      xΦxΦ 1

124                        (23) 

Corresponding to equation (13), the strain-displacement relationship in terms of the differential form 

of the shape function of the piezoelectric unimorph beam can be formulated by substituting equation 

(21) to give,  

     txzx,t ee
uΨS                            (24)            

where the differential form of the shape function of the strain displacement relationship can be 

formulated as, 

 
 

        xΨxΨxΨxΨ
x

x
x

e
e

43212

2


d

d Φ
Ψ                                     (25)          

where                        
 

321

126

e

e

e L

xx

L
xΨ


    ,    

 

ee

e

LL

xx
xΨ

46
22 


                            
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       
 

233

612

ee

e

LL

xx
xΨ 


    ,    

 

ee

e

LL

xx
xΨ

26
24 


                                (26)  

     

The elemental discretised electric field E, induced by the strain field due to input ambient vibration, 

can create a polarisation in the piezoelectric material in the z-direction along its thickness generating 

the electrical voltages. The electrical field is a function of the electrical potential with negative 

gradient operator given by, 

 z,te3E                                                          (27)  

where      tzz,t eee
v   is the electrical potential with linear assumption and the parameter 

    ppn
e hhzzz  is the shape function over the interval npn zzhz   and zn indicates the 

distance from the asymmetric neutral axis as given in appendix A.  Symbol   is a gradient operator 

for the first derivative of the shape function with respect to the thickness direction, giving 

     p
ee hdzzdz 1 Ω . On this case, the discretised electric field can be reformulated as, 

               tee z vΩE 3               (28) 

The expression of the stress field in the partial differential shape function form can be formulated for 

both piezoelectric and substructure elements by substituting equations (24) and (28)  into  equations 

(3) and (4) to give,   

           tzetxcz eeee
vΩuΨT 31

2
11

2
1                                          

                               txcz ee
uΨT

1
11

1
1                                      (29)

  

The electric displacement vector of the piezoelectric component can be formulated by substituting 

equations (24) and (28) into (2) to give, 

       tztxze eeSee
ε vΩuΨD 33313                                   (30) 

     

4.2. Lagrangian electromechanical finite element equation 

Constitutive electromechanical finite element dynamic equations are developed for modelling the 

elemental piezoelectric unimorph with the tip mass offset under input base transverse excitation. The 

functional energy forms using the extended Lagrangian formulation consist of kinetic KE, potential 

PE and electrical WE energies and non-conservative work WF. The extended Lagrange equation can 

be written as, 

 





















1

0
s

s

ss

ΠΠ

t
F

d

d
                                    (31) 

 

where   WEPE KE Π  ,        t,vtu,tus
   
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and         t,qtwbases
F   or  

   

































 tv

WF

tu

WF
F

ee
s 1

s  

The kinetic energy can be formulated based on the mass density of the piezoelectric unimorph and 

density of tip mass as,  

          

 

       

 
  



1

2

1

1

222112

2

1

2

1 e

e

e

e

x

x A

T
x

x A

T
xAx,tx,tρzxAx,tx,tρzKE dddd θθθθ   

                  

 

       

 
  



1

2

1

1

2211

2

1

2

1 e

e

e

e

x

x A

T
x

x A

T
xAx,tx,tρxAx,tx,tρ dddd wwww   

                ,tx,txI,tx,txI,tx,txxI e
T

e
tip

e
T

e
tip

e
T

ec
tip

112110110
2

1

2

1
  θθwwθw              (32) 

 

Derivation of equation (32) can be seen in appendix B. The potential energy for the piezoelectric 

unimorph can be formulated as, 

     

 

     

 
  



1

2

1

1

22
1

2
1

11
1

1
1

2

1

2

1 e

e

e

e

x

x A

T
x

x A

T
xAxAPE dddd TSTS                                   (33) 

The electrical energy term for the piezoelectric layer can be reduced as, 

 

 
 



1

2

2
33

2

1 e

e

x

x A

T
xAWE ddDE                                                   (34)    

The non-conservative work on the system due to the input base excitation and electrical charge output 

can be written as, 

       
 

       
 

  



1

2

1

1

2211
e

e

e

e

x

x A

T
x

x A

T
txAx,tρtxAx,tρWF basebase wwww  dddd     

                       ttt,txIt,txxI ee
base

T
e

tip
base

T
ec

tip
vqwwwθ    1010                           (35) 

 

The reduced form of equation (35) due to the input base excitation can be found in appendix C. The 

expressions of the functional energy forms including external work can be modified in terms of the 

discretised mechanical and electrical shape functions. The extended kinetic energy form can be 

formulated by substituting equations (21) into equation (32) giving, 

   
   

   

 

   
   

   

 
  



1

2

1

1

222112

2

1

2

1 e

e

e

e

x

x A

e
eTe

Te
x

x A

e
eTe

Te xAt
x

x

x

x
tρzxAt

x

x

x

x
tρzKE dd

d

d

d

d
dd

d

d

d

d
u

ΦΦ
uu

ΦΦ
u 

         
             

 

           

 
  



1

2

1

1

2211

2

1

2

1 e

e

e

e

x

x A

eeTeTe
x

x A

eeTeTe xAtxxtρxAtxxtρ dddd uΦΦuuΦΦu                                

           
 

         txxtIt
dx

xd
xtxI e

e
eT

e
eTetipe

e
T

e
eT

c
tip

uΦΦuu
Φ

Φu  110
1

10
2

1



     



15 

 
 

 

 

       
 

 
 

 t
dx

xd
t

dx

xd
I ee

e
Te

T

e
e

tip
u

Φ
u

Φ
 11

2
2

1                                (36) 

 

Corresponding to equations (24) and (29),  the extended potential energy form can be reduced as,   

 

           

 

           

 
  



1

2

1

1

22
11

211
11

2

2

1

2

1 e

e

e

e

x

x A

eeTeTe
x

x A

eeTeTe xAtxcxtzxAtxcxtzPE dddd uΨΨuuΨΨu  

                  
 

   
 



1

2

2
31

2

1 e

e

x

x

e

A

eTeTe xAtzxtze ddvΩΨu                                                       (37) 

 

The extended electrical energy expression can be reduced by substituting equations (28) and (30) into 

equation (34) as, 

 

         

 

         

 
  



1

2

1

2

2
33

2
31

2

1

2

1 e

e

e

e

x

x A

eeTeTeS
x

x A

eeTeTe xAtzztεxAtxztzeWE dddd vΩΩvuΨΩv         (38) 

 

The extended virtual work in terms of the expression of non-conservative energy can be formulated 

by substituting equations (21) into (35) to give, 

           

 

         

 

   



1

2

1

1

2211
e

e

e

e

x

x

base

A

eTe
x

x

base

A

eTe txAtxρtxAtxρWF wuΦwuΦ  dddd  

              
 

             ttttxItt
dx

xd
xI ee

base
e

e
etip

base
e

T

e
e

c
tip

vqwuΦwu
Φ

 
  10

1
0                      (39) 

         

The expressions given from equations (36)-(39) can be substituted into equation (31) to give two 

electromechanical dynamic equations. After simplifying, the first electromechanical dynamic equation 

due to the transverse bending form can be expressed as, 

       
       

 

       

 
  



1

2

1

1

2212
e

e

e

e

x

x A

e
eTex

x A

e
eTe
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x

x

x
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x

x

x

x
z dd

d

d

d

d
dd

d

d

d

d
u

ΦΦ
u

ΦΦ
  

       
         

 

           

 
  

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1

2211
e

e

e

e

x

x A

eeTe
x

x A

eeTe xAtxxρxAtxxρ dddd uΦΦuΦΦ      

        
 

       
   

 t
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x
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x
xxI ee
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e
e
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e
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etipe
e
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e
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u

ΦΦ
uΦΦu

Φ
Φ 
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d

d

d

d

d 11
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1
102 




              

                

 

         
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e
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e

e
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x

x A

eTee xAtxxczxAtxxcz dddd uΨΨuΨΨ    

          
 

           

 
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e

x
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eTe xAtzxzexAtzxze dddd vΩΨvΩΨ     
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     

 

       

 
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
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1

1

2211
e

e

e
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Te
x

x
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A
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 

     tLIt
x

L
xI base

T
e

etip
base

T

e
e

c
tip

wΦw
Φ


00 

d

d
                                                                    (40) 

 

The second electromechanical dynamic equation due to the electrical form can be expressed as, 

       

 

       

 
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       
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qvΩΩ dd                                                                     (41)  

Equation (41) can be modified by differentiating with respect to time to give, 
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TS
e

e

ivΩΩ dd                                               (42) 

 

4.3. Element matrices of electromechanical dynamic equations  

Constitutive electromechanical non-homogenous differential dynamic equations in terms of equations 

(40) and (42) can be arranged into matrix form by including Rayleigh damping to give, 
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It is important to note here that equation (43) consists of mass, stiffness, electromechanical coupling, 

and piezoelectric capacitance matrices and dynamic force vectors. These parameters are modelled at 

the local electromechanical element located between the end of the unimorph beam length and the tip 

mass. The contribution of the offset tip mass can be seen in the mass matrices and dynamic force 

vectors where most of the other literatures ignored this. As the unimorph-based Euler-Bernoulli beam 

assumption is considered, the first term from the mass matrix (rotary inertia of the unimorph) can be 

discarded due to the contribution of the Rayleigh beam assumption. Also, the contribution of input 

base excitation to the cantilever unimorph beam mathematically affects the distributed input dynamic 

forces into all the elements. Note that when other elements of the unimorph beam are considered in 

the numerical simulation, the parameter for the tip mass should be discarded from the mass matrices 

and input dynamic force vectors.  

 

4.4. Normalised global element matrices of electromechanical dynamic equations  

Constitutive electromechanical finite element dynamic equations in global matrix form reduced from 

the global transformation of local elements can be formulated as,     
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Note that script terms mn  and en  showing at each parameter in equation (45) indicate the global 

matrices corresponding to global displacement vectors at nodes (nodal degrees of freedom) and global 

electrical voltage vectors at elements (electrical degrees of freedom), respectively. For assembling the 

global matrices, the connectivity matrices whose discretised elements share the same node, should 

meet the requirements of compatibility. As the unimorph beam is a cantilevered structure under input 

base excitation, the fixed boundary condition at the base structure must be employed in the global 

matrices. For this case, the derivations for the normalised electromechanical dynamic equations and 

FRFs can be solved and given in the next stage. The use of MATLAB computer program not only 

provides the best method for solving this case but also gives the efficient computation technique.  
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The solution form of time-dependent displacement can be stated in terms of the normalised modal 

vector and time-dependent displacement generalised coordinate as, 

 

           ttt...ttt mmmm aaaaau    112211                      (46) 

where the normalised modal matrix  can be formulated as, 

    2

1


 MUUU
T

                                              

           (47)  

It should be noted that parameters  and U  represent a set of the normalised modal matrix and 

generalised eigenvector, respectively. To obtain the eigenvector and eigenvalue solution, the 

undamped mechanical dynamic equation from the stiffness and mass matrices should be non-singular, 

since the eigenvalue equation   02  UMK ω  can be used to find the nontrivial eigenvector. Note 

that the normalised modal matrix is the matrix whose columns consist of the normalised eigenvectors 

[56].  The elemental strain field of the unimorph beam given in equation (24) can be formulated in 

terms of equations (24) and (46) to give,  

                                
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eeee taxztaxztxzx,t ΨuΨS                           (48) 

It should be noted that the elemental strain node parameter  xe
μ  based on the normalised 

eigenvector can be determined at certain elements and nodes of the system over the 

interval 1 ee xxx . Note that collective data points for strain nodes along the unimorph beam can 

only be identified for each discretised element using the differential strain-displacement function 

 xe
Ψ  and elemental normalised eigenvector  . The normalised eigenvector at certain elements can 

only be determined by separating cell vector array from the normalised modal matrix in terms of the 

elemental degree of freedom and multimode system. 

 

Equation (47) can be used to diagonalise the mass, stiffness and damping matrices for simplifying the 

computation technique. Substituting equation (46) into equation (45) and premultiplying the result by 

T gives, 

                   FvPaKaCaM
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θ
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T
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                                                           (49)                  

or simplifying equation (49) becomes, 
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T
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                                                               (50)        
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Parameter  tbasewQ̂   from equation (50a) indicates nodal dynamic forces of the discretised unimorph 

harvester model due to the input base excitation. Other normalised parameters from equation (50) can 

be stated as, 

            IM  T ,   2
ωK  T ,      22  βαβα TTT

IKMC         

  

θ
T

θ PP̂ 

 

,  T
θPP̂

T
θ  ,

  
  QQ̂

T                           

               

(51) 

 

It should be noted that equation (51a) represents the orthornormality property of mechanical dynamic 

equations, the results of which indicate diagonal matrices.     

 

4.5. Normalised global scalar form of the electromechanical dynamic equations  

In simplification, the normalised global element matrices of electromechanical transverse equations 

from equation (50) can be reduced into scalar forms in order to formulate the multimode frequency 

analysis of the distributed piezoelectric component as shown in figure 2a. The electromechanical 

equations consist of the coupled field normalised differential equations for each elemental global 

coordinate component. In this case, the first form of the discretised electromechanical piezoelectric 

dynamic equation can be formulated for the multi-degree of freedom (multimode) 

system ,....,NDOF,,r 321  in terms of the number of normalised piezoelectric elements 

,....,NELP,,s 321  as,          

                         twQtvPtaωtaωζta baser
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2
2 ,     ,...,NDOF,r 21        (52) 

The second form of the discretised electromechanical piezoelectric dynamic equation can be 

formulated as,   
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r
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,....,NELP,,s 321                                 (53) 

Note that since the piezoelectric surface with the electrode layers is distributed evenly on the 

substructure layer, the coupled equation for the global coordinate system should be based on the 

electromechanical discretisation as shown in figure 2b. The internal parallel connection in terms of the 

Kirchhoff's voltage law (KVL) and Kirchhoff's current law (KCL) can be used to formulate the 

electrical discretised elements as, 

           tvtv....tvtv s  21          

                                titi....titi PPsPP  21                                                   (54) 

For voltage output, the external load resistance can be used as an external circuit to connect all 

electrical discretised piezoelectric elements in parallel connection as,  
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    loadP Rtitv                                                                (55) 

Multimode FRFs of the distributed piezoelectric unimorph can be formulated. First, by modifying the 

first term of equation (53) algebraically corresponding with the number of the normalised 

piezoelectric elements. Second, employing equations (54) and (55) into the equations obtained from 

the first step. Third, by applying equation (54) into equation (52). Fourth, the results obtained from 

the second and third steps can be algebraically solved using Laplace transforms giving the result in 

matrix form. The superposition of equations for voltage multimode FRFs can be formulated after 

simplifying as,  
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The multimode FRF of the electric current output related to the input base transverse acceleration can 

be stated as,  
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(57) 

           

                          

The power harvesting multimode FRF related to the input transverse acceleration can be formulated 

as, 
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               (58) 

To formulate the optimal multimode FRF of power harvesting, the reduced optimal load resistance 

needs to be formulated first. For this case, equation (58) can be differentiated with respect to load 

resistance and the differentiable power function can be set to zero to give the optimal load resistance 

as,  
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where  
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It should be noted that the optimal load resistance can be substituted back into equation (58) to give 

the optimal power harvesting. Moreover, the multimode FRF representing the transverse displacement 

relative to the input transverse acceleration can be obtained as, 
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Before equation (61) is modified into the transverse displacement FRF with respect to the input 

transverse acceleration at any position along the unimorph beam (x), the characteristic transverse 

motion of the unimorph beam can be reformulated in terms of the natural normal mode multiplied by 

the time-dependent transverse displacement using equations (21) and (46) to give,
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Moreover, the characteristic motions for tip mass offset over the interval tipLLxL   can be 

formulated using the characteristic motions of the tip of the beam. Note that, as mentioned previously; 

since the tip mass offset is assumed to undergo rigid body motion, its motion solely depends upon the 

tip of the beam’s transverse rectilinear and rotation or slope motions. In this point, the transverse 

displacement response of the tip mass offset can be formulated as,   
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Corresponding to equations (61) and (62), the FRF that relates the multimode transverse displacement 

to the input base acceleration of the unimorph beam can be formulated as,  
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For tip mass offset, the multimode transverse displacement FRFs can also be formulated in terms of 

equations (61) and (63) to give, 
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For experimental study, a Laser Doppler Vibrometer (LDV) was used for capturing dynamic 

responses from the small beam and tip mass structures under input base motion to give the absolute 

motions. For this case,  equations (64) and (65) need to be modified in terms of the absolute motion. 

Since the combination between the base and relative motions defines the absolute motion, the multi-

mode FRFs of absolute transverse displacement and velocity at any position along the unimorph beam 

and the tip mass offset can be formulated as,  
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5. Experimental validation: results and discussion 

 

In this section, the multimode FRFs for the velocity, electrical voltage, current, and power outputs 

using the new electromechanical finite element equations are investigated and validated with the 
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experimental studies with the variable load resistance (resistive shunt circuit). The input base 

transverse acceleration onto unimorph structures was chosen to be 1 m/s2. The piezoelectric unimorph 

structure was made from the PZT PSI-5A4E material (Piezo Systems Inc., Woburn, MA) and the rigid 

body of the offset tip mass was subsequently attached. The geometrical structures of the piezoelectric 

unimorph with tip mass offset can be seen in figure 4 and detail of the tip mass geometry including 

formulas can be seen in appendix D. Note that since the tip mass was glued on the top surface of the 

substructure, the extra substructure length lt was assumed to be a rigid body contributing the tip mass 

offset. The complete properties of the unimorph are given in table 1. In figure 4, the unimorph length 

L and width b with piezoelectric thickness hp and substructure (brass) thickness hs were set to 60 mm, 

6 mm, 0.127 mm and 0.5 mm, respectively. The tip mass configurations were calculated according to 

the geometry and material property. The dimensions of tip mass offset with lt, ht and b (width) were 

set to 15 mm, 10 mm and 6 mm, respectively.  
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As shown from the experimental setup in figure 5, the cantilevered piezoelectric unimorph beam with 

the tip mass offset was clamped at the base structure under input dynamic excitation. The input 

acceleration from the base structure was measured using the B & K accelerometer. The B & K exciter 

connected to the power amplifier was used as the  input  dynamic  excitation. The wave function 

generator connected to the power amplifier was used to control the input excitation using the sine 

sweep from the frequencies of 5 Hz to 1000 Hz with frequency increment of 0.3125 Hz and 40  

averages controlled from the B & K FFT Pulse analyser software in order to obtain very smooth 

Figure 4.  Geometry of unimorph beam with tip mass offset. 

Material  properties Piezoelectric     Brass 

Young’s modulus, 11c  (GPa) 66 105 

Density, ρ (kg/m3) 7800 9000 

Piezoelectric constant, d31 (pm/V) -190 - 

Permittivity, 
T
33  (F/m) 1800 o  - 

permittivity of free space, o (pF/m) 8.854 - 
 

  Table 1. Properties of the piezoelectric unimorph system. 
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frequency response and to avoid aliasing components. Dynamic velocity of the tip mass offset was 

measured using a Polytec laser vibrometer with a  measurement range  full scale of 500 mm/s and low 

pass filter setting of 22 KHz. Before operating the laser, a small reflecting film was attached on the 

top of the tip mass. Moreover, all signal measurements from the accelerometer, piezoelectric 

unimorph and vibrometer were connected to the sophisticated B & K FFT Analyzer 3560B data 

acquisition device with five channels with maximum frequency span up to 25.6 kHz. All processing 

signals through the analyzer displayed the measurement results using the FFT pulse software. Note 

that all sensitivities for scaling factors given from B & K accelerometer of 9.633 mV/ms-2 and laser 

vibrometer of 125 mm/s.V (8 V/m.s-1) were inserted into the FFT pulse in order to obtain the correct 

results. Since the acceleration is given in per-unit acceleration in m/s2, all results of FRFs given from 

the experiment and the numerical analysis in the next stage are given in per- unit acceleration in m/s2. 

Note that the B & K pulse software also provides facility (unit organiser) for modifying the units of 

amplitude of FRF, for example; the amplitudes from the laser measurement can be stated into the 

velocity or displacement per-unit acceleration.  

 

The first four modes of the unimorph beam as shown in figure 6 can be used to identify the 

smoothness of mode shapes using the different sizes of a number of discretised elements. Although 

the resonant frequencies with discretisation using lower number of elements seem to be quite close to 

each other, the mode shapes seem to be quite coarse. These results show that the proposed 50 

electromechanical discretised elements appear to be sufficient to provide accurate results that can give 

smooth mode shapes including the natural frequencies. With the 50 electromechanical discretised 

elements, the strain node along unimorph beam as shown in figure 7 can be determined using the 

inflection point of the second order differential shape function of the strain-displacement relationship 

as shown in equation (48). As the surfaces of the piezoelectric material are covered with the electrode 

layers, the inflection point can be used to identify the location of strain nodes along the beam 

indicating the change of strains (tension and compressive strains) between two segments of the 

piezoelectric structure. This can avoid the reduction of the power output at the second or higher 

modes. Further detail of the parametric strain node cases associated with the experimental study in 

terms of electrical connection patterns can be discussed in future investigations. For this case, our 

main purpose of this numerical study is to present the new electromechanical finite element vibration 

techniques and show the validation with experimental studies.  
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Figure 6.  Normalised displacement mode shape with (a) 5 elements, (b) 10 elements,  

                (c) 30 elements and (d) 50 elements. 

  

 

Figure 5. (a) Experimental setup and (b) piezoelectric unimorph beam with tip mass offset  

clamped on the base structure. 
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In figure 8(a), the absolute tip velocity FRFs and experimental results for the first mode show very 

good agreement under the variable load resistance. As can be seen, the higher amplitudes can be 

achieved when load resistances and frequencies shift from the short to open circuits.  By viewing 

figure 8(b), the maximum tip absolute velocity responses at the short and open circuit resonance 

frequencies of 18.5 Hz and 18.9 Hz were reached for load resistances approaching the lower and the 

higher values (from short to open circuit load resistances), respectively. This behaviour can also be 

seen more obviously in figure 8(c). In many cases of vibration, the maximum dynamic displacement 

is generally avoided for most structures. It should be noted here that the power harvesting response 

can be shown to give the best results without having the maximum displacement as further discussed 

next part. Note that the resonance frequency and amplitude response can shift due to resistive shunt 

damping from the variable load resistance where this affects the electromechanical behaviour of the 

piezoelectric element. In addition, the physical behaviour of the piezoelectric unimorph, involving 

piezoelectric couplings and internal capacitance, also adds electromechanical damping as well as 

electromechanical stiffness. At this point, it is realised that the damping effects consist of the 

mechanical and electrical components due to the electromechanical behaviour of the dimensional 

structure, external load resistance and material properties of the piezoelectric and substructure. 

Identification of mechanical damping with very low load resistance can be obtained by matching the 

amplitude of the experimental and theoretical tip absolute velocity and voltage FRFs. Mechanical 

damping ratio of the first mode 0162.01  under a very low load resistance of 562 Ω was obtained 

(approaching the short circuit resistance) because using the actual short circuit load resistance (Rload = 

Figure 7.  Normalised strain mode shape with 50 Elements. 
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0) will result in the theoretical voltage FRF to be zero where the tip absolute displacement cannot be 

identified. This situation cannot be used to identify the voltage and displacement FRF behaviours of 

the electromechanical system.  

 

With variation in the load resistance, the first mode of the voltage FRFs also varies while increasing 

load resistance as shown in figure 9(a). For this case, the resonance frequency shifts to the higher 

value from short to open circuit load resistances followed by an increase in the amplitude. Note that 

when the voltage FRF with load resistance is close to open circuit, the amplitude remains constant. 

  

     

  

 

 

Figure 8.  Tip absolute velocity FRF with (a) numerical (solid lines) and experimental results (round dot), 

 (b) variable load resistances under the short circuit and open circuit resonance frequencies and 

 (c) three dimensional analysis.   

(b) (c) 

(a) 
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Figure 9(b) shows the trend of voltage behaviour under variable load resistance giving good 

agreement between numerical and experimental results. In general form, the voltage under short and 

open circuit resonances indicates a slight increase with increasing load resistance. However, the 

maximum open circuit resonance amplitude gave a higher value compared with the short circuit 

resonance when load resistance passed over the transitional or critical point of the short and open 

circuit amplitudes. Note that the critical point of the amplitude response between short and open 

circuit resonance frequencies shows the same amplitude. The change of frequency due to the variable 

load resistance can also be seen more obviously in figure 9(c). For electrical current FRFs as shown in  

 

    

                                                     

 

 

 

 

Figure 9.  Voltage FRF with (a) numerical (solid lines) and experimental results (round dot), 

 (b) variable load resistances under the short circuit and open circuit resonance frequencies and 

 (c) three dimensional analysis.   

(b) (c) 

(a) 
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figure 10(a),  the trend shows opposite behaviour to that of the voltage FRFs. The electrical current 

shows the highest amplitude when the load resistance approaches to the open circuit. Again, in the 

opposite trend with the voltage response, the variation of electric current with variable load resistance 

under short and open circuit resonance frequencies as shown in 10(b) reaches the maximum amplitude 

with decreasing load resistance. This trend can be seen more obviously in the three dimensional 

current FRF given in figure 10(c). Another important aspect related to the  FRFs  can  also be  

considered to  be  the  relationships between  the   dynamic  velocity, electrical voltage and current. 

The absolute velocity amplitude with the load resistance approaching short circuit seems to increase, 

where the voltage amplitude decreases with the increasing electrical current. Conversely, the velocity 

amplitude with the load resistance approaching open circuit tends to increase where the voltage 

amplitude increases with the decreasing electrical current. 

   

  

 

Figure 10.  Electrical current FRF with (a) numerical (solid lines) and experimental results (round dot), 

 (b) variable load resistances under the short circuit and open circuit resonance frequencies and  

 (c) three dimensional analysis.  

(b) 

(a) 

(c) 
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However, the power harvester FRFs especially near the first mode response as shown in figure 11(a) 

seems to behave with different trend where the short and open circuit load resistances tend to decrease 

the amplitude. It can be said that the highest velocity amplitudes at the short and open circuit load 

resistances do not show the highest power amplitudes. In different configuration with velocity, 

voltage and current, the variation of power harvesting under short and open circuit resonance 

frequencies as shown figure 11(b) show two different optimum load resistances, giving the optimum 

amplitudes. In the three dimensional graph as shown in figure 11(c), the optimum power harvesting 

amplitudes can also be seen clearly at the regions away from the short and open circuit load 

resistances. 

 

 

  

 

 

(a) 

(b) (c) 

Figure 11.  Power FRF with (a) numerical (solid lines) and experimental results (round dot), 

(b) variable load resistances under the short circuit and open circuit resonance frequencies and 

(c) three dimensional analysis.  
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The optimal power harvesting based on the optimal load resistance can also be seen in figure 12a 

where the absolute maximum power amplitude point coincides with the load resistance of 227 k  in 

the resonance frequency of 18.70 Hz. However, the optimal load resistance in the off-resonance 

regions seem to approach and overlap with the load resistances of 155 k  and 332 k  where the 

experimental results also are very close to these off-resonance regions except for the driving 

frequency below 8 Hz due to unwanted noise. By scrutinising the optimal power harvesting response, 

the numerical modelling result shown in figure 12b shows that ignoring the rotary inertia of the tip 

mass results in the shift of the resonance frequency to a higher value. The resonance difference can 

Figure 12.  Identification of the optimal power FRF with (a) numerical (dash lines) and  

experimental results (round dot) based on the optimal load resistance and related to  

other load resistances and (b) different cases of tip mass offset.  

(a) 

(b) 
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also be seen to be more pronounced if the model ignores the offset distance of the tip mass measured 

from its centroid to the end of the unimorph beam length. Neglecting both the offset and rotary inertia 

of the tip mass results in a larger modelling error. It can be seen that when designing the power 

harvesting device either micro- or -meso scale, the mathematical model should include the effect of 

the offset and rotary inertia of the tip mass.  

 

6. Conclusion 

The new numerical study proposed in this paper addresses five important points. 

 The electromechanical discretisation was numerically developed, since the actual piezoelectric 

material covered by the thin electrode layers only generates a single voltage across the electrical 

load. The electromechanical discretisation introduced here consists of the mechanical discretised 

elements for elemental displacement fields and the parallel electrical discretised elements for 

multi-output electrical current. The previous published papers related to the piezoelectric finite 

element have not considered this in their mathematical modelling, although many of them showed 

different applications.  

 Instead of developing the kinematic equations of the unimorph beam, the tip mass offset was 

formulated, since it contributes significantly into the mass matrices and input dynamic force 

vector. The benefit of locating the tip mass with its centroid away from the end of the piezoelectric 

beam is for modelling various applications especially MEMS power harvesters. The improved 

designs avoid contact between the brittle piezoelectric material and the tip mass. The previous 

published papers related to MEMS have ignored this in their mathematical modelling.  

 The numerical techniques provide physical interrelationship between electrode effect, coupled 

field equations, kinematic equations, electromechanical discretisation, and electromechanical 

dynamic equations. 

 The reduced constitutive electromechanical finite element equations were further derived into 

global normalised scalar form of the electromechanical dynamic equations in order to formulate 

the strain mode shape, eigenmode shape and multimode electromechanical FRFs. Unlike analytical 

techniques, the proposed new numerical solution techniques provided the benefit to analyse the 

structure with different scalabilities including MEMS devices. 

 The comparisons between the numerical solution techniques and experimental studies have been 

discussed in terms of the variable load resistance, giving good agreement.  

 

Overall, the experimental verification and parametric numerical case studies have been explored and 

have shown close agreement. For this paper, the proposed new electromechanical finite element 

modelling has proved that the velocity, current and power FRFs have shown very similar trends with 
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the previous published analytical literatures. These numerical results were also validated with 

experimental studies. Moreover, since the trend of optimal power harvesting FRF using different 

cases of the tip mass was presented, the new method showed that neglecting the rotary inertia of the 

tip mass resulted in the resonance frequency error. Notably modelling errors occurred from ignoring 

the tip mass offset and ignoring both tip mass offset and rotary inertia. The other new aspect shown in 

using these numerical techniques is that the system models configured normalised strain node and 

eigenmode shapes using discretised elements for convergence studies. Further detail of frequency 

analysis using strain node effect in terms of the electrical circuit connection patterns will be a focus of 

future studies. 

The new numerical techniques can be a very useful tool for analysing FRFs, displacement mode 

shape, and strain node forms. These techniques can be applied for modelling different geometrical 

aspects for laminated structures and MEMS power harvester devices. For this case, since our main 

concern is to present the new contribution of numerical techniques, it is important to validate the 

results obtained from numerical FRFs using experimental studies where the trends of the results were 

also shown to be very similar with established facts from the previous analytical literatures. Further 

applications for new aspects of power harvesting using the proposed numerical techniques can be 

demonstrated in future research studies. 

Appendix A. Determining the asymmetric neutral axis  

In figure A1, the location of the asymmetric neutral axis measured from the y-axis to the top surface 

of the piezoelectric layer can be determined using the resultant force balance in the cross-section of 

the unimorph structure to give,  
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Manipulating equation (A1), the location of the asymmetric neutral axis can be reduced as, 
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where coefficients 
 1

11c  and 
 2

1111 cc E   represent substructure elastic stiffness and piezoelectric elastic 

stiffness at constant electric field, respectively. 
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Appendix B. Determining the kinetic energy reduced from the kinematic equations 

Corresponding to equations (7) and (11), the total kinetic energy of the system consisting of the 

elemental unimorph and tip mass offset as shown in figure (3) can be formulated as, 

                             tipunimorph KEKEKE                                                           (B.1) 

where   
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As mentioned previously, the translation and angular velocities of tip mass at the end of the unimorph 

beam length L as shown in figure (1) can be transformed into the local position of the end of the 

element 1ex  as shown in figure (3). Equation (B.2a) can be expanded as,  
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It is noted that the first terms for each parenthesis from equation (B.3) must be zero due to the 

Lagrangian functional form of the system only depending upon the relative translation and velocity of 

the unimorph as expressed in Section 4.2. The second terms for each parenthesis contribute to the 

input dynamic forces and these terms can be moved into the non-conservative work section as given 

in detail in appendix C. For the tip mass kinetic energy, equation (B.2b) can be expanded as, 
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Figure A1.  Cross-section of piezoelectric unimorph beam.   
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Again, the first term of equation (B.4) must be zero. Moreover, the second to fifth terms must be zero 

due to containing the first mass moment of inertias for the tip mass body about the centroid at point g 

as shown in figure 3, since the centroid of the tip mass is located on that centroid itself [57]. Again the 

sixth and seventh terms can be moved into the non-conservative work section.  

Equations (B.3)–(B.4) can simply be rewritten in matrix form as,  
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The zeroth and second mass moment of inertias of the tip mass offset can be stated as, 
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where mmm
tip zyxV dddd   and definite integral forms of f(y,z) implied from equation (B.5) can be 

defined as,  
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Note that equation (B.7) can be used for any operational integrations not only in the kinetic energy 

derivation but also for other Lagrangian energy forms given from equations (36)–(39).    

 

Appendix C. Determining the non-conservative work from the input base motion 

 

As mentioned in appendix B, the contributions of non-conservative forces due to the input base 

excitation on the system were reduced from the kinetic energy. As a result, the virtual work done by 

non-conservative forces can simply be formulated in terms of their time dependent response using the 

Hamiltonian principle as, 
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Note that from the mathematical standpoint, the functional form of Lagrangian’s principle is reduced 

from the Hamiltonian’s principle using the variational method. Therefore, corresponding to equation 
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(39), the virtual non-conservative works can be expanded by using the second terms for each 

parenthesis from equation (B.3) and the sixth and seventh terms from equation (B.4) as, 
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Equation (C.2) needs to be further formulated by applying partial integration and the result can be 

stated in the matrix form as,   
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Appendix D. Determining geometry parameters of tip mass offset 

 

Corresponding to the parameters given from equation (B.6), the mass moment of inertias of the tip 

mass offset as shown in figure 4 can be formulated. Note that as mentioned previously, the extra 

unimorph beam length as shown in figure D1 also contributed to the tip mass offset.  In this case, the 

zeroth mass moment of inertia can be stated as, 
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and the second mass moment of inertia of tip mass offset at the point d located in the end of unimorph 

beam can be reduced to give, 
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where the offset distances measured from the tip mass centroid to the point d  in the x- and z-axes can 

respectively be formulated as, 
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Alternatively with the same result, the second mass moment of inertia of tip mass offset at the point d 

located at the end of the unimorph beam can straightforwardly be formulated as,  
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