18 research outputs found

    Innovative Rural Development Initiatives

    Get PDF
    This Interim Report provides first results from case studies of innovative rural development initiatives in Europe. They were conducted by IIASA's European Rural Development (ERD) project during 2001 -- primarily to test the feasibility of the research concept and to get a first realistic impression of rural development problems and possibilities at the IDeal level. These reports are only the first round of a much larger sample of some 40 to 50 case studies, which are planned for the next two years. The results from these initial investigations will be used to streamline the research procedure for the larger sample of case studies. The rural development initiatives in this report include the following projects: a project to promote direct marketing of organic farming products in Eastern Germany ("Scheunenhof"); an eco-tourism project in Estonia ("Viljandimaa"); a Hungarian project to promote environmental protection and tourism ("SPANC"); an EU-network project to promote integrated participatory planning in Finland, Sweden and Norway ("CROSSPLAN"); a private imitative to establish a rural high-tech company in Carinthia, Austria ("me.chanic"); a project in Finland to improve the social competence and labor qualifications of rural delinquents ("KEHYPAJA"); the project of a Swedish farmer to build a small-scale wind power plant ("PITCH WIND"); and the initiatives of a mother and son in a small Polish village to start a farm-tourism agency and an eco-technology center ("Sunflower Farm")

    In vitro selection of Remdesivir resistance suggests evolutionary predictability of SARS-CoV-2

    Get PDF
    Remdesivir (RDV), a broadly acting nucleoside analogue, is the only FDA approved small molecule antiviral for the treatment of COVID-19 patients. To date, there are no reports identifying SARS-CoV-2 RDV resistance in patients, animal models or in vitro. Here, we selected drug-resistant viral populations by serially passaging SARS-CoV-2 in vitro in the presence of RDV. Using high throughput sequencing, we identified a single mutation in RNA-dependent RNA polymerase (NSP12) at a residue conserved among all coronaviruses in two independently evolved populations displaying decreased RDV sensitivity. Introduction of the NSP12 E802D mutation into our SARS-CoV-2 reverse genetics backbone confirmed its role in decreasing RDV sensitivity in vitro. Substitution of E802 did not affect viral replication or activity of an alternate nucleoside analogue (EIDD2801) but did affect virus fitness in a competition assay. Analysis of the globally circulating SARS-CoV-2 variants (>800,000 sequences) showed no evidence of widespread transmission of RDV-resistant mutants. Surprisingly, we observed an excess of substitutions in spike at corresponding sites identified in the emerging SARS-CoV-2 variants of concern (i.e., H69, E484, N501, H655) indicating that they can arise in vitro in the absence of immune selection. The identification and characterisation of a drug resistant signature within the SARS-CoV-2 genome has implications for clinical management and virus surveillance

    A plasmid DNA-launched SARS-CoV-2 reverse genetics system and coronavirus toolkit for COVID-19 research

    Get PDF
    The recent emergence of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the underlying cause of Coronavirus Disease 2019 (COVID-19), has led to a worldwide pandemic causing substantial morbidity, mortality, and economic devastation. In response, many laboratories have redirected attention to SARS-CoV-2, meaning there is an urgent need for tools that can be used in laboratories unaccustomed to working with coronaviruses. Here we report a range of tools for SARS-CoV-2 research. First, we describe a facile single plasmid SARS-CoV-2 reverse genetics system that is simple to genetically manipulate and can be used to rescue infectious virus through transient transfection (without in vitro transcription or additional expression plasmids). The rescue system is accompanied by our panel of SARS-CoV-2 antibodies (against nearly every viral protein), SARS-CoV-2 clinical isolates, and SARS-CoV-2 permissive cell lines, which are all openly available to the scientific community. Using these tools, we demonstrate here that the controversial ORF10 protein is expressed in infected cells. Furthermore, we show that the promising repurposed antiviral activity of apilimod is dependent on TMPRSS2 expression. Altogether, our SARS-CoV-2 toolkit, which can be directly accessed via our website at https://mrcppu-covid.bio/, constitutes a resource with considerable potential to advance COVID-19 vaccine design, drug testing, and discovery science

    A prenylated dsRNA sensor protects against severe COVID-19

    Get PDF
    INTRODUCTION Interferons (IFNs) are cytokines that are rapidly deployed in response to invading pathogens. By initiating a signaling cascade that stimulates the expression of hundreds of genes, IFNs create an antiviral state in host cells. Because IFNs heavily influence COVID-19 outcomes, and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replication can be inhibited by the antiviral state, it is important to understand how the individual antiviral effectors encoded by IFN-stimulated genes (ISGs) inhibit SARS-CoV-2. RATIONALE We hypothesized that IFN-stimulated antiviral effectors can inhibit SARS-CoV-2, and that variation at the loci encoding these defenses underlies why some people are more susceptible to severe COVID-19. RESULTS We used arrayed ISG expression screening to reveal that 2′-5′-oligoadenylate synthetase 1 (OAS1) consistently inhibited SARS-CoV-2 in different contexts. Using CRISPR-Cas9, we found that endogenous OAS1 makes a substantial contribution to the antiviral state by recognizing short stretches of double-stranded RNA (dsRNA) and activating RNase L. We globally mapped where OAS1 binds to SARS-CoV-2 viral RNAs and found that OAS1 binding is remarkably specific, with two conserved stem loops in the SARS-CoV-2 5′-untranslated region (UTR) constituting the principal viral target. OAS1 expression was readily detectable at the sites of infection in individuals who died of COVID-19, and specific OAS1 alleles are known to be associated with altered susceptibility to infection and severe disease. It had previously been reported that alleles containing a common splice-acceptor single nucleotide polymorphism in OAS1 (Rs10774671) were associated with less severe COVID-19. We determined that people with at least one allele with a G at this position could express a prenylated form of OAS1 (p46), whereas other individuals could not. Using a series of mutants, we found that C-terminal prenylation was necessary for OAS1 to initiate a block to SARS-CoV-2. Furthermore, confocal microscopy revealed that prenylation targeted OAS1 to perinuclear structures rich in viral dsRNA, whereas non-prenylated OAS1 was diffusely localized and unable to initiate a detectable block to SARS-CoV-2 replication. The realization that prenylation is essential for OAS1-mediated sensing of SARS-CoV-2 allowed us to examine the transcriptome of infected patients and investigate whether there was a link between the expression of prenylated OAS1 and SARS-CoV-2 disease progression. Analysis of the OAS1 transcripts from 499 hospitalized COVID-19 patients revealed that expressing prenylated OAS1 was associated with protection from severe COVID-19. Because prenylated OAS1 was so important in human cases, we wanted to determine whether horseshoe bats, the likely source of SARS-CoV-2, possessed the same defense. When we examined the genomic region where the prenylation signal should reside, retrotransposition of a long terminal repeat sequence had ablated this signal, preventing the expression of prenylated anti-CoV OAS1 in these bats. CONCLUSION C-terminal prenylation targets OAS1 to intracellular sites rich in viral dsRNA, which are likely the SARS-CoV-2 replicative organelles. Once in the right place, OAS1 binds to dsRNA structures in the SARS-CoV-2 5′-UTR and initiates a potent block to SARS-CoV-2 replication. Thus, the correct targeting of OAS1 and the subsequent inhibition of SARS-CoV-2 likely underpins the genetic association of alleles containing a G at Rs10774671 with reduced susceptibility to infection and severe disease in COVID-19. Moreover, the conspicuous absence of this antiviral defense in horseshoe bats potentially explains why SARS-CoV-2 is so sensitive to this defense in humans

    A prenylated dsRNA sensor protects against severe COVID-19

    Get PDF
    Inherited genetic factors can influence the severity of COVID-19, but the molecular explanation underpinning a genetic association is often unclear. Intracellular antiviral defenses can inhibit the replication of viruses and reduce disease severity. To better understand the antiviral defenses relevant to COVID-19, we used interferon-stimulated gene (ISG) expression screening to reveal that OAS1, through RNase L, potently inhibits SARS-CoV-2. We show that a common splice-acceptor SNP (Rs10774671) governs whether people express prenylated OAS1 isoforms that are membrane-associated and sense specific regions of SARS-CoV-2 RNAs, or only express cytosolic, nonprenylated OAS1 that does not efficiently detect SARS-CoV-2. Importantly, in hospitalized patients, expression of prenylated OAS1 was associated with protection from severe COVID-19, suggesting this antiviral defense is a major component of a protective antiviral response

    A prenylated dsRNA sensor protects against severe COVID-19

    Get PDF
    Inherited genetic factors can influence the severity of COVID-19, but the molecular explanation underpinning a genetic association is often unclear. Intracellular antiviral defenses can inhibit the replication of viruses and reduce disease severity. To better understand the antiviral defenses relevant to COVID-19, we used interferon-stimulated gene (ISG) expression screening to reveal that OAS1, through RNase L, potently inhibits SARS-CoV-2. We show that a common splice-acceptor SNP (Rs10774671) governs whether people express prenylated OAS1 isoforms that are membrane-associated and sense specific regions of SARS-CoV-2 RNAs, or only express cytosolic, nonprenylated OAS1 that does not efficiently detect SARS-CoV-2. Importantly, in hospitalized patients, expression of prenylated OAS1 was associated with protection from severe COVID-19, suggesting this antiviral defense is a major component of a protective antiviral response

    Quantitative proteomic analysis of SARS-CoV-2 infection of primary human airway ciliated cells and lung epithelial cells demonstrates the effectiveness of SARS-CoV-2 innate immune evasion.

    Get PDF
    Background: Quantitative proteomics is able to provide a comprehensive, unbiased description of changes to cells caused by viral infection, but interpretation may be complicated by differential changes in infected and uninfected 'bystander' cells, or the use of non-physiological cellular models. Methods: In this paper, we use fluorescence-activated cell sorting (FACS) and quantitative proteomics to analyse cell-autonomous changes caused by authentic SARS-CoV-2 infection of respiratory epithelial cells, the main target of viral infection in vivo. First, we determine the relative abundance of proteins in primary human airway epithelial cells differentiated at the air-liquid interface (basal, secretory and ciliated cells). Next, we specifically characterise changes caused by SARS-CoV-2 infection of ciliated cells. Finally, we compare temporal proteomic changes in infected and uninfected 'bystander' Calu-3 lung epithelial cells and compare infection with B.29 and B.1.1.7 (Alpha) variants. Results: Amongst 5,709 quantified proteins in primary human airway ciliated cells, the abundance of 226 changed significantly in the presence of SARS-CoV-2 infection (q 1.5-fold). Notably, viral replication proceeded without inducing a type-I interferon response. Amongst 6,996 quantified proteins in Calu-3 cells, the abundance of 645 proteins changed significantly in the presence of SARS-CoV-2 infection (q 1.5-fold). In contrast to the primary cell model, a clear type I interferon (IFN) response was observed. Nonetheless, induction of IFN-inducible proteins was markedly attenuated in infected cells, compared with uninfected 'bystander' cells. Infection with B.29 and B.1.1.7 (Alpha) variants gave similar results. Conclusions: Taken together, our data provide a detailed proteomic map of changes in SARS-CoV-2-infected respiratory epithelial cells in two widely used, physiologically relevant models of infection. As well as identifying dysregulated cellular proteins and processes, the effectiveness of strategies employed by SARS-CoV-2 to avoid the type I IFN response is illustrated in both models

    Evidence for Genetic Heterogeneity in D-2-Hydroxyglutaric Aciduria

    No full text
    We performed molecular, enzyme, and metabolic studies in 50 patients with D-2-hydroxyglutaric aciduria (D-2-HGA) who accumulated D-2-hydroxyglutarate (D-2-HG) in physiological fluids. Presumed pathogenic mutations were detected in 24 of 50 patients in the D-2-hydroxyglutarate dehydrogenase (D2HGDH) gene, which encodes D-2-hydroxyglutarate dehydrogenase (D-2-HGDH). Enzyme assay Of D-2-HGDH confirmed that all patients with mutations had impaired enzyme activity, whereas patients with D-2-HGA whose enzyme activity was normal did not have mutations. Significantly lower D-2-HG concentrations in body fluids were observed in mutation-positive D-2-HGA patients than in mutation-negative patients. These results imply that multiple genetic loci may be associated with hyperexcretion of D-2-HG. Accordingly, we suggest a new classification: D-2-HGA Type I associates with D-2-HGDH deficiency, whereas idiopathic D-2-HGA manifests with normal D-2-HGDH activity and higher D-2-HG levels in body fluids compared with Type I patients. It remains possible that several classifications for idiopathic D-2-HGA patients with diverse genetic loci will be revealed in future studies. Hum Mutat 31:279-283, 2010. (C) 2009 Wiley-Liss, Inc
    corecore