14 research outputs found

    Assimilation of alternative sulfur sources in fungi

    Get PDF
    Fungi are well known for their metabolic versatility, whether it is the degradation of complex organic substrates or the biosynthesis of intricate secondary metabolites. The vast majority of studies concerning fungal metabolic pathways for sulfur assimilation have focused on conventional sources of sulfur such as inorganic sulfur ions and sulfur-containing biomolecules. Less is known about the metabolic pathways involved in the assimilation of so-called “alternative” sulfur sources such as sulfides, sulfoxides, sulfones, sulfonates, sulfate esters and sulfamates. This review summarizes our current knowledge regarding the structural diversity of sulfur compounds assimilated by fungi as well as the biochemistry and genetics of metabolic pathways involved in this process. Shared sequence homology between bacterial and fungal sulfur assimilation genes have lead to the identification of several candidate genes in fungi while other enzyme activities and pathways so far appear to be specific to the fungal kingdom. Increased knowledge of how fungi catabolize this group of compounds will ultimately contribute to a more complete understanding of sulfur cycling in nature as well as the environmental fate of sulfur-containing xenobiotics

    Coronavirus Cell Entry Occurs through the Endo-/Lysosomal Pathway in a Proteolysis-Dependent Manner

    Get PDF
    Enveloped viruses need to fuse with a host cell membrane in order to deliver their genome into the host cell. While some viruses fuse with the plasma membrane, many viruses are endocytosed prior to fusion. Specific cues in the endosomal microenvironment induce conformational changes in the viral fusion proteins leading to viral and host membrane fusion. In the present study we investigated the entry of coronaviruses (CoVs). Using siRNA gene silencing, we found that proteins known to be important for late endosomal maturation and endosome-lysosome fusion profoundly promote infection of cells with mouse hepatitis coronavirus (MHV). Using recombinant MHVs expressing reporter genes as well as a novel, replication-independent fusion assay we confirmed the importance of clathrin-mediated endocytosis and demonstrated that trafficking of MHV to lysosomes is required for fusion and productive entry to occur. Nevertheless, MHV was shown to be less sensitive to perturbation of endosomal pH than vesicular stomatitis virus and influenza A virus, which fuse in early and late endosomes, respectively. Our results indicate that entry of MHV depends on proteolytic processing of its fusion protein S by lysosomal proteases. Fusion of MHV was severely inhibited by a pan-lysosomal protease inhibitor, while trafficking of MHV to lysosomes and processing by lysosomal proteases was no longer required when a furin cleavage site was introduced in the S protein immediately upstream of the fusion peptide. Also entry of feline CoV was shown to depend on trafficking to lysosomes and processing by lysosomal proteases. In contrast, MERS-CoV, which contains a minimal furin cleavage site just upstream of the fusion peptide, was negatively affected by inhibition of furin, but not of lysosomal proteases. We conclude that a proteolytic cleavage site in the CoV S protein directly upstream of the fusion peptide is an essential determinant of the intracellular site of fusion

    Terminal platinum(II) phosphido complexes : synthesis, structure, and thermochemistry

    No full text
    A series of terminal Pt(II) phosphido complexes Pt(dppe)(Me)(PRR') (R = H; R' = Mes* (1), R' = Mes (2), R' = Ph (3), R' = Cy (4); R = R' = Mes (5); R = R' = Ph (6); R = R' = Cy (7); R = R' = Et (8); R = Ph, R' = i-Bu (9)) has been prepared by proton transfer from the appropriate phosphine to the methoxide ligand of Pt(dppe)(Me)(OMe) (10) (dppe = Ph2PCH2-CH2PPh2; Mes* = 2,4,6-(t-Bu)(3)C6H2; Mes = 2,4,6-Me3C6H2; Cy = cyclo-C6H11). Complexes 1 and 2 were also made by deprotonation of the cations [Pt(dppe)(Me)(PH2Ar)][BF4] (Ar = Mes* (13); Ar = Mes (14)). For comparison to 1, the arylthiolate and aryloxide complexes Pt(dppe)(Me)(EMes*) (E = S (11); E = O (12)) were also prepared from 10. NMR studies of the proton-transfer equilibria between Pt(dppe)(Me)(X), Pt(dppe)(Me)(Y), and the acids HY and HX (see Bryndza, H. E.; Fong, L. K.; Paciello, R. A.; Tam, W.; Bercaw, J. E. J. Am. Chem. Sec. 1987, 109, 1444-1456 and Bryndza, H. E.; Domaille, P. J.; Tam, W.; Fong, L. K.; Paciello, R. A.; Bercaw, J. E. Polyhedron 1988, 7, 1441-1452) provide an approximate partial ranking of Pt-P bond strengths in this series: Pt-PHPh > Pt-PHMes > Pt-PHMes*; Pt-PPh2 > Pt-PMes(2). Complementary solution calorimetry investigations probe the role of entropic effects on the equilibria. Both steric and electronic factors appear to be important in controlling relative Pt-P bond strengths. The Pt-S bonds in 11 and Pt(dppe)(Me)(SPh) are stronger than the analogous Pt-P bonds in 1 and 3. Complexes 1 and 5.THF were structurally characterized by X-ray crystallography

    Sirih alat menyatakan perasaan yang simbolik

    No full text
    Disease-suppressive soils are ecosystems in which plants suffer less from root infections due to the activities of specific microbial consortia. The characteristics of soils suppressive to specific fungal root pathogens are comparable to those of adaptive immunity in animals, as reported by Raaijmakers and Mazzola (Science 352:1392-3, 2016), but the mechanisms and microbial species involved in the soil suppressiveness are largely unknown. Previous taxonomic and metatranscriptome analyses of a soil suppressive to the fungal root pathogen Rhizoctonia solani revealed that members of the Burkholderiaceae family were more abundant and more active in suppressive than in non-suppressive soils. Here, isolation, phylogeny, and soil bioassays revealed a significant disease-suppressive activity for representative isolates of Burkholderia pyrrocinia, Paraburkholderia caledonica, P. graminis, P. hospita, and P. terricola. In vitro antifungal activity was only observed for P. graminis. Comparative genomics and metabolite profiling further showed that the antifungal activity of P. graminis PHS1 was associated with the production of sulfurous volatile compounds encoded by genes not found in the other four genera. Site-directed mutagenesis of two of these genes, encoding a dimethyl sulfoxide reductase and a cysteine desulfurase, resulted in a loss of antifungal activity both in vitro and in situ. These results indicate that specific members of the Burkholderiaceae family contribute to soil suppressiveness via the production of sulfurous volatile compounds
    corecore