22 research outputs found

    ECLAIRE: Effects of Climate Change on Air Pollution Impacts and Response Strategies for European Ecosystems. Project final report

    Get PDF
    The central goal of ECLAIRE is to assess how climate change will alter the extent to which air pollutants threaten terrestrial ecosystems. Particular attention has been given to nitrogen compounds, especially nitrogen oxides (NOx) and ammonia (NH3), as well as Biogenic Volatile Organic Compounds (BVOCs) in relation to tropospheric ozone (O3) formation, including their interactions with aerosol components. ECLAIRE has combined a broad program of field and laboratory experimentation and modelling of pollution fluxes and ecosystem impacts, advancing both mechanistic understanding and providing support to European policy makers. The central finding of ECLAIRE is that future climate change is expected to worsen the threat of air pollutants on Europe’s ecosystems. Firstly, climate warming is expected to increase the emissions of many trace gases, such as agricultural NH3, the soil component of NOx emissions and key BVOCs. Experimental data and numerical models show how these effects will tend to increase atmospheric N deposition in future. By contrast, the net effect on tropospheric O3 is less clear. This is because parallel increases in atmospheric CO2 concentrations will offset the temperature-driven increase for some BVOCs, such as isoprene. By contrast, there is currently insufficient evidence to be confident that CO2 will offset anticipated climate increases in monoterpene emissions. Secondly, climate warming is found to be likely to increase the vulnerability of ecosystems towards air pollutant exposure or atmospheric deposition. Such effects may occur as a consequence of combined perturbation, as well as through specific interactions, such as between drought, O3, N and aerosol exposure. These combined effects of climate change are expected to offset part of the benefit of current emissions control policies. Unless decisive mitigation actions are taken, it is anticipated that ongoing climate warming will increase agricultural and other biogenic emissions, posing a challenge for national emissions ceilings and air quality objectives related to nitrogen and ozone pollution. The O3 effects will be further worsened if progress is not made to curb increases in methane (CH4) emissions in the northern hemisphere. Other key findings of ECLAIRE are that: 1) N deposition and O3 have adverse synergistic effects. Exposure to ambient O3 concentrations was shown to reduce the Nitrogen Use Efficiency of plants, both decreasing agricultural production and posing an increased risk of other forms of nitrogen pollution, such as nitrate leaching (NO3-) and the greenhouse gas nitrous oxide (N2O); 2) within-canopy dynamics for volatile aerosol can increase dry deposition and shorten atmospheric lifetimes; 3) ambient aerosol levels reduce the ability of plants to conserve water under drought conditions; 4) low-resolution mapping studies tend to underestimate the extent of local critical loads exceedance; 5) new dose-response functions can be used to improve the assessment of costs, including estimation of the value of damage due to air pollution effects on ecosystems, 6) scenarios can be constructed that combine technical mitigation measures with dietary change options (reducing livestock products in food down to recommended levels for health criteria), with the balance between the two strategies being a matter for future societal discussion. ECLAIRE has supported the revision process for the National Emissions Ceilings Directive and will continue to deliver scientific underpinning into the future for the UNECE Convention on Long-range Transboundary Air Pollution

    ÉCLAIRE - Effects of Climate Change on Air Pollution Impacts and Response Strategies for European Ecosytems - second periodic report 01/04/2013 to 30/09/2014

    Get PDF

    ECLAIRE third periodic report

    Get PDF
    The ÉCLAIRE project (Effects of Climate Change on Air Pollution Impacts and Response Strategies for European Ecosystems) is a four year (2011-2015) project funded by the EU's Seventh Framework Programme for Research and Technological Development (FP7)

    Comparison of spatial patterns of ammonia concentration and dry deposition flux between a regional Eulerian chemistry-transport model and a local Gaussian plume model

    No full text
    Agricultural activities are the principal sources of ammonia (NH3) emitted into the atmosphere. High ammonia deposition flux may impact sensitive ecosystems. Regional models of NH3 dispersion, transport and deposition may under- or overestimate NH3 fluxes. We compared NH3 dry deposition fluxes simulated with local and regional models on different theoretical scenarios characterised by varying the values of several input factors: grid cell sizes, characteristics of the NH3 sources such as location and emission rate, characteristics such as canopy resistance (Rc) or roughness length (z0) at the NH3 sinks, and meteorological conditions such as wind speed and direction. Our results showed that, for a given grid cell size, both models provide similar predictions of average NH3 concentration and dry deposition flux over the whole simulation domain. A sensitivity analysis of NH3 concentration and dry deposition flux to wind speed and to surface resistance also showed a similar behaviour between both models. However, the differences of model formalism and changes in the values of the input factors, especially grid cell size and vertical resolution, provide different spatial patterns of NH3 dry deposition flux and concentration. Our results would suggest that regional models operating with large grid cell sizes (e.g. larger than 1 km) could not predict accurately patterns of NH3 dry deposition fluxes close to the sources (e.g. a few tens or hundreds of metres) on heterogeneous landscapes in terms of NH3 fluxes

    Temporal variations of atmospheric ammonia revealed from space: fromlong-term global trends to weekly cycle and intraday variability

    No full text
    International audienceAmmonia (NH3) is widely recognised as a major primary pollutant, deteriorating water, soil,and air quality. While the importance of monitoring and regulating atmospheric NH3emissions has been underlined for decades by experts in the field and endorsed or ratifiedby a multitude of international organizations, it is only recently that the issue is making itsway onto the political agendas. Over a decade ago, it was discovered that high-resolutioninfrared satellite sounders can measure atmospheric NH3, leading to major advances in ourunderstanding of this atmospheric compound and its sources, and to new possibilities forbenchmarking or enforcing regulations.Currently, several satellite instruments on polar orbits measure NH3 global distributions twicea day. Here, we use the long-term daily NH3 time-series available from the InfraredAtmospheric Sounding Interferometer (IASI) mission (end of 2007 up to now) to derive global,regional, and national trends. Reported national trends are analysed in the light of changinganthropogenic and pyrogenic NH3 emissions, meteorological conditions, and the impact ofconcomitant sulphur and nitrogen oxides emissions.For the first time, the presence of a weekly cycle in the atmospheric NH3 burden is identifiedfrom space over north-western Europe. The weekend effect highlighted here presents astrong seasonality due to agricultural activities and associated regulations. Ground-basedmeasurements from the Dutch National Air Quality Monitoring Network corroborate ourresults.Finally, we present the first observations of NH3 from the Geostationary InterferometricInfrared Sounder (GIIRS) onboard the Chinese FY-4A satellite. GIIRS measures almost all ofAsia ten times per day. We analyse the daily cycle of NH3 over two small regions in Pakistanand China, and how it varies across different seasons

    Trend analysis of reduced nitrogen components over the Netherlands with the EMEP4NL and OPS model

    No full text
    Declining ammonia emissions are not always reflected in ammonia concentrations due to physicochemical processes and meteorology. Here we present a trend analysis of reduced nitrogen components over the Netherlands using two different types of atmospheric transport models: the Eulerian grid model EMEP/MSC-W and the plume model OPS. We employ calculations with the Eulerian grid model EMEP/MSC-W for the Netherlands in its EMEP4NL configuration. Using the Weather Research Forecast (WRF) model as meteorological driver plus detailed emission data over the Netherlands as input into the EMEP4NL model, we present simulation results over the Netherlands of reduced nitrogen components from this model at a horizontal resolution of 1.3 × 2.1 km. Using this configuration of the EMEP/MSC-W model (EMEP4NL), a trend analysis is performed over the period 2006–2015 for concentration and deposition of reduced nitrogen components over the Netherlands. The same analysis is performed with the OPS-model, a plume model with a Lagrangian trajectory model for long range transport. Both models use the same MACC III emission distribution for countries outside of the Netherlands, and spatially more detailed emissions for the Netherlands itself. Emission totals per SNAP (Supporting National Action and Planning) sector per country are used over the period 2006–2015, according to the latest CEIP (Centre on Emissions Inventories and Projections) expert estimates. The OPS-model is driven with yearly specific meteorological fields provided by the Royal Netherlands Meteorological Institute (KNMI). Furthermore, the OPS-model parameterizes its chemistry, whereas EMEP4NL uses a state-of-the-art chemistry scheme. Results from ammonia concentrations, ammonium concentrations and wet deposition as calculated with both models, are first compared with observations from the National Air Quality Monitoring Network in the Netherland (LML). Calculations of ammonia and wet deposition both agree well with the measurements in the OPS and the EMEP4NL model. Ammonium is better represented by calculations with the EMEP4NL model than by the OPS-model. Measurements of dry deposition of reduced nitrogen are very limited, therefore only a comparison is made between the model results of EMEP4NL and OPS. Subsequently, a trend analysis is performed over the period 2006–2015 for the reduced nitrogen components for both model calculation results and the measurements. The trends of all components are calculated over the mean values of monitoring stations over the Netherlands. The reported decline in the emissions of ammonia is not reflected in the ammonia concentrations and wet deposition of reduced nitrogen as measured and calculated with the OPS and the EMEP4NL model. Ammonium concentrations on the other hand are declining (also) due to the decrease of the SOx emissions over the period 2006–2015. Finally, both models show a slight decline in the dry deposition values, despite the fact that both models (and observations) do not show a decrease in the ammonia concentrations. A more detailed analysis of the comparison of dry deposition of reduced nitrogen between both models, and the influence of the physicochemical processes and meteorology is in preparation. Overall, it is found that the calculated trends for the different reduced nitrogen components with a grid model like EMEP4NL and a plume model like OPS are roughly in line with each other

    On the weekly cycle of atmospheric ammonia over European agricultural hotspots

    No full text
    International audienceThe presence of a weekly cycle in the abundance of an atmospheric constituent is a typical fingerprint for the anthropogenic nature of its emission sources. However, while ammonia is mainly emitted as a consequence of human activities, a weekly cycle has never been detected in its abundances at large scale. We expose here for the first time the presence of a weekend effect in the NH 3 total columns measured by the IASI satellite sounder over the main agricultural source regions in Europe: northwestern Europe (Belgium-the Netherlands-northwest Germany), the Po Valley, Brittany, and, to a lesser extent, the Ebro Valley. A decrease of 15% relative to the weekly mean is seen on Sunday-Monday observations in northwestern Europe, as a result of reduced NH 3 emissions over the weekend. This is confirmed by in situ NH 3 concentration data from the National Air Quality Monitoring Network in the Netherlands, where an average reduction of 10% is found around midnight on Sunday. The identified weekend effect presents a strong seasonal variability, with two peaks, one in spring and one in summer, coinciding with the two main (manure) fertilization periods. In spring, a reduction on Sunday-Monday up to 53 and 26% is found in the NH 3 satellite columns and in situ concentrations, respectively, as fertilization largely drives atmospheric NH 3 abundances at this time of the year
    corecore