169 research outputs found
Analysis of polycyclic aromatic hydrocarbons (PAHs) and their derivatives in biochar treated stormwater
Polycyclic aromatic hydrocarbons (PAHs), oxygenated PAHs (oxy-PAHs) and nitrogen heterocyclic polycyclic aromatic compounds (N-PACs) are persistent and semi-volatile organic compounds primarily formed due to incomplete combustion of organic material or, in the case of the derivatives, through transformation reactions of PAHs. Their presence in the environment is ubiquitous and many of them have been proven carcinogenic, teratogenic, and mutagenic. These toxic pollutants can therefore pose a threat to both ecosystem and human health and urges for remediation strategies for PAHs and derivatives from water bodies. Biochar is a carbon-rich material resulting from the pyrolysis of biomass resulting in a very porous matter with high surface area for an enhanced interaction with chemicals. This makes biochar a promising alternative for filtering micropollutants from contaminated aquatic bodies. In this work, a previously developed and validated methodology for the analysis of PAHs, oxy-PAHs and N-PACs in surface water samples was adapted for its utilization in biochar treated stormwater with special emphasis on scaling down the solid-phase extraction as well as including an additional filtering step for the removal of particulate matter in the media. & BULL; Optimized extraction method for PAHs, oxy-PAHs and N-PACs from stormwater treated with biochar. & BULL; Biochar strongly impacts the stormwater matrix and, therefore, additional steps are required in the extraction methodology. & BULL; Solid-phase extraction combined with GC-MS have been used to analyse PAHs, oxy-PAHs and N-PACs in stormwater treated with biochar
Integrated Treatment of Per- and Polyfluoroalkyl Substances in Existing Wastewater Treatment Plants ─ Scoping the Potential of Foam Partitioning
Foam fractionation is becoming increasingly popular as a treatment technology for water contaminated with per- and polyfluoroalkyl substances (PFAS). At many existing wastewater treatment facilities, particularly in aerated treatment steps, foam formation is frequently observed. This study aimed to investigate if foam fractionation for the removal of PFAS could be integrated with such existing treatment processes. Influent, effluent, water under the foam, and foam were sampled from ten different wastewater treatment facilities where foam formation was observed. These samples were analyzed for the concentration of 29 PFAS, also after the total oxidizable precursor (TOP) assay. Enrichment factors were defined as the PFAS concentration in the foam divided by the PFAS concentration in the influent. Although foam partitioning did not lead to decreased ∑PFAS concentrations from influent to effluent in any of the plants, certain long-chain PFAS were removed with efficiencies up to 76%. Moreover, ∑PFAS enrichment factors in the foam ranged up to 105, and enrichment factors of individual PFAS ranged even up to 106. Moving bed biofilm reactors (MBBRs) were more effective at enriching PFAS in the foam than activated sludge processes. Altogether, these high enrichment factors demonstrate that foam partitioning in existing wastewater treatment plants is a promising option for integrated removal. Promoting foam formation and removing foam from the water surface with skimming devices may improve the removal efficiencies further. These findings have important implications for PFAS removal and sampling strategies at wastewater treatment plants
Pilot-Scale Continuous Foam Fractionation for the Removal of Per- and Polyfluoroalkyl Substances (PFAS) from Landfill Leachate
Per- and polyfluoroalkyl substances (PFAS) are of concern for their ubiquity in the environment combined with their persistent, bioaccumulative, and toxic properties. Landfill leachate is often contaminated with these chemicals, and therefore, the development of cost-efficient water treatment technologies is urgently needed. The present study investigated the applicability of a pilot-scale foam fractionation setup for the removal of PFAS from natural landfill leachate in a novel continuous operating mode. A benchmark batch test was also performed to compare treatment efficiency. The ΣPFAS removal efficiency plateaued around 60% and was shown to decrease for the investigated process variables air flow rate (Qair), collected foam fraction (%foam) and contact time in the column (tc). For individual long-chain PFAS, removal efficiencies above 90% were obtained, whereas the removal for certain short-chain PFAS was low
Spatial distribution and load of per- and polyfluoroalkyl substances (PFAS) in background soils in Sweden
Per- and polyfluoroalkyl substances (PFAS) are known to be persistent, bioaccumulative, and have adverse health effects, but very little is known about PFAS in the terrestrial environment and factors influencing their distribution. This paper presents one of the first comprehensive studies investigating PFAS (n = 28) in background forest soils (n = 27) on national scale across Sweden. The results showed that 16 of 28 target PFAS were present and all sites contained at least three PFAS compounds, with total concentrations ranging between 0.40 ng/g dry weight (dw) and 6.6 ng/g dw. Perfluorooctanesulfonic acid (PFOS) showed the highest detection frequency of 89% and a median concentration of 0.39 ng/g dw. The PFOS loads (ng/m(3)) showed a distinct spatial distribution, with a significant exponential increase from north to south (R-2 = 0.55; p < 0.001) and west to east (R-2 = 0.35; p < 0.01). In some parts of Sweden, the compound 6:2 fluorotelomer sulfonate (6:2 FTSA) had a higher median concentration (1.4 ng/g dw), but was in comparison to PFOS more impacted by local sources. Partial least squares discriminant analysis (PLS-DA) showed regional clustering of PFAS compositional profiles, indicating that PFAS soil background concentrations are functions of spatial variations at local, regional, and countrywide scale. Such spatial trends have not been observed previously and it could not be deduced whether they are indicative of trends on a global scale, or country-specific and better explained by proximity to densely populated urban areas. An interpolation and extrapolation raster map created from the results was used to calculate the average total PFAS load on Swedish soils. Estimated total load in the top 10-cm soil layer was 2.7 +/- 2.4 tons for PFOS and 16 +/- 14 tons for n-ary sumation PFAS, indicating that soil carries a considerable legacy of past PFAS release
Seasonal trends of per- and polyfluoroalkyl substances in river water affected by fire training sites and wastewater treatment plants
Fire-fighting training areas and wastewater treatment plants (WWTPs) are potential sources of per- and polyfluoroalkyl substances (PFASs) to the nearby aquatic environment. This study investigated seasonal variations of PFAS levels in two river catchments in Sweden; one impacted by Stockholm Arlanda Airport (Sites 1 and 2), and the other by WWTPs and a military airport (Uppsala) (Sites 3 and 4). Sigma PFAS concentrations were up to 61 (Sites 1 and 2) and 4 (Sites 3 and 4) times higher compared to the reference site. Distinct different seasonal trends were observed in the two catchments with higher Sigma PFAS concentrations during the high water flow season at Site 1 compared to the low water flow season, whereas Sites 3 and 4 showed an inverse seasonal trend. This demonstrates that the pollution is mobilized during periods of high flow in the first catchment (Stockholm Arlanda Airport), while it is diluted during high flow in the second catchment (Uppsala). Average annual loads for Sigma PFASs were estimated at similar to 5.2 and similar to 3.7 kg yr(-1) for the catchment in Uppsala and Stockholm Arlanda Airport, respectively. Thus, both catchments add PFASs to Lake Malaren, which is Sweden's most important source area for drinking water production
Mass flow of per- and polyfluoroalkyl substances (PFAS) in a Swedish municipal wastewater network and wastewater treatment plant
Per: and polyfluoroalkyl substances (PFAS) are ubiquitously distributed in wastewater, due to their numerous uses in industry and consumer products, but little is known of PFAS mass flows in municipal wastewater network systems and within wastewater treatment plants (WWTPs). This study assessed mass flows of 26 PFAS in a wastewater network and WWTP, to provide new insights into their sources, transport, and fate in different treatment steps. Wastewater and sludge samples were collected from pumping stations and the main WWTP in Uppsala, Sweden. PFAS composition profiles and mass flows were used to identify sources within the sewage network. Wastewater from one pumping station showed elevated concentrations of C3–C8 PFCA, likely caused by an industrial source, and two stations had elevated concentrations of 6:2 FTSA, probably originating from a nearby firefighter training facility. Within the WWTP, short-chain PFAS dominated in wastewater, whereas longchain PFAS dominated in sludge. The ratio of perfluoroalkyl sulfonates (PFSA) and ethylperfluorooctanesulfonamidoacetic acid (EtFOSAA) to ∑26PFAS decreased during the WWTP process, likely due to sorption to sludge, but also transformation (EtFOSAA). Overall, PFAS were not efficiently removed in the WWTP, with mean removal efficiency of 10 ± 68% for individual PFAS, resulting in discharge of 7000 mg d− 1 ∑26PFAS into the recipient. This shows that conventional WWTPs are inefficient in removing PFAS from wastewater and sludge, so advanced treatment techniques are needed
Foam fractionation for removal of per- and polyfluoroalkyl substances: Towards closing the mass balance
Foam fractionation has recently attracted attention as a low-cost and environmentally benign treatment technology for water contaminated with per- and polyfluoroalkyl substances (PFAS). However, data on the mass balance over the foam fractionation process are scarce and when available, gaps in the mass balance are often identified. This study verified the high treatment efficiency of a pilot-scale foam fractionation system for removal of PFAS from industrial water contaminated with aqueous film-forming foam. ΣPFAS removal reached up to 84 % and the removal of perfluorooctane sulfonic acid (PFOS) up to 97 %, but the short-chain perfluorobutanoic acid (PFBA) was only removed with a mean efficiency of 1.5 %. In general, mobile short-chain PFAS were removed less efficiently when the perfluorocarbon chain length was below six for carboxylic acids and below five for sulfonic acids. Fluctuations in treatment efficiency due to natural variations in the chemistry of the influent water were minor, confirming the robustness of the technology, but significant positive correlations between PFAS removal and influent metal concentration and conductivity were observed. Over all experiments, the mass balance closure did not differ significantly from 100 %. Nonetheless, PFAS sorption to the walls of the reactor was measured, as well as high PFAS emissions by the air exiting the reactor. PFAS emissions in aerosols correlated positively with mass balance closure. The elevated aerial PFAS concentrations measured in the experimental facility have implications for worker safety and prevention of PFAS-emissions to the atmosphere, and demonstrate the importance of installing appropriate filters on the air outlet of foam fractionation systems
Long-distance transport of per- and polyfluoroalkyl 2 substances (PFAS) in a Swedish drinking water aquifer
Use of per-and polyfluoroalkyl substance (PFAS)-containing aqueous film-forming foams (AFFF) at firefighting training sites (FFTS) has been linked to PFAS contamination of drinking water. This study investigated PFAS transport and distribution in an urban groundwater aquifer used for drinking water production that has been affected by PFAS-containing AFFF. Soil, sediment, surface water and drinking water were sampled. In soil (n = 12) at a FFTS with high perfluorooctane sulfonate (PFOS) content (87% of sigma PFAS), the sigma PFAS concentration (n = 26) ranged from below detection limit to 560 ng g(-1)dry weight. In groundwater (n = 28), the sigma PFAS concentration near a military airbase FFTS reached 1000 ng L-1. Principal component analysis (PCA) identified the military FFTS as the main source of PFAS contamination in drinking water wellfields > 10 km down-gradient. Groundwater samples taken close to the military FFTS site showed no sigma PFAS concentration change between 2013 and 2021, while a location further down-gradient showed a transitory 99.6% decrease. Correlation analysis on PFAS composition profile indicated that this decrease was likely caused by dilution from an adjacent conflating aquifer. sigma PFAS concentration reached 15 ng L-1 (PFOS 47% and PFHxS 41% of sigma PFAS) in surface river water (n = 6) and ranged between 1 ng L-1 and 8 ng L-1(PFHxS 73% and PFBS 17% of sigma PFAS) in drinking water (n = 4). Drinking water had lower PFAS concentrations than the wellfields due to PFAS removal at the water treatment plant. This demonstrates the importance of monitoring PFAS concentrations throughout a groundwater aquifer, to better understand variations in transport from contamination sources and resulting impacts on PFAS concentrations in drinking water extraction areas
New extraction method prior to screening of organic micropollutants in various biota matrices using liquid chromatography coupled to high-resolution time-of-flight mass spectrometry
A new extraction method with limited clean-up requirements prior to screening various matrices for organic micropollutants using liquid chromatography-high resolution mass spectrometry (LC-HRMS) for analysis was developed. First, the performance of three extraction methods (QuEChERS with SPE clean-up, ultrasonication with SPE clean-up, extraction without SPE clean-up) was tested, optimized, and compared using > 200 contaminants of emerging concern (CECs) together covering a wide range of physicochemical properties applicable for suspect and non-target screening in biota. White-tailed sea eagle (Haliaeetus albicilla) muscle tissue was used in method development and optimization. The method without SPE clean-up was then applied to European perch (Perca fluviatilis) muscle, heart, and liver tissues. The optimization and application of the method demonstrated a wide applicable domain of the novel extraction method regarding species, tissues, and chemicals. For future applications, the suitability of the method for suspect and non-target screening was tested. Overall, our extraction method appears to be sufficiently simple and broad (relatively non-discriminant) for use prior to analysis of CECs in various biota
Dispersal of persistent organic pollutants from fiber-contaminated sediments: biotic and abiotic pathways
Purpose Numerous sites contaminated with fiber emissions from pulp and paper industries are found in coastal areas of the Baltic Sea, but there is limited knowledge about the magnitude of dispersal of persistent organic pollutants (POPs) from these anthropogenic, organic-rich sediments called fiberbanks. The aim of this study was to quantify and compare different POP dispersal pathways from such fiberbanks. Dispersal mechanisms studied included abiotic and biotic routes (dissolved in water, particle-bound, and bioaccumulation). Materials and methods Contaminated fibrous sediments located in angstrom ngermanalven River estuary in north-eastern Sweden were studied in sediment types representing different fiber content (i.e., fiberbanks, fiber-rich sediments, and less fiber impacted sediments). Sediment-to-water fluxes of dissolved contaminants (polychlorinated biphenyls (PCBs), hexachlorobenzene (HCB), and dichlorodiphenyltrichloroethane (DDT)) were measured in situ using benthic flux chambers. Particle resuspension was measured by sampling bottom water, before and after disturbing the sediment surface. Benthic biota was collected to determine the body burden of contaminants and to determine biota-pore water accumulation factors (BAF(PW)) and biota-sediment accumulation factors (BSAFs). In addition, concentrations of dissolved POPs in the water column were measured in field using passive samplers. Instrumental analysis was performed using gas chromatography coupled to a triple quadrupole mass spectrometer (GC-MS/MS). Results and discussion The flux of dissolved sigma(20)PCBs was approximately two times higher from one of the investigated fiberbanks (3.4 ng m(- 2) day(- 1)) compared to the other. The average particle burden of PCBs was also higher at this fiberbank after artificial disturbance (15 ng g(-1) particle), which indicates that larger amounts of contaminants are likely to disperse via particle resuspension from this site compared to the other fiberbank (4.8 ng g(- 1) particle). The difference might be associated with a layer of recently settled minerogenic material that covers one of the fiberbanks, which probably functions as a protective barrier. The lack of benthic biota implies that contaminant release by bioturbation is negligible in the studied fiberbanks. However, benthic biota from fiber-rich sediment showed bioaccumulation and biomagnification of contaminants. Conclusions The importance of diffusive flux from fiberbanks under undisturbed conditions became apparent when the different dispersal pathways were quantified. However, no dispersal pathway could be judged as irrelevant, since even under undisturbed conditions, advective particle transport was significant. Additionally, the uptake by biota and trophic transfer can be considerable. Quantification of dispersal routes and understanding of the relative importance of various pathways is critical for proper risk assessment and management of contaminated sediments
- …