6 research outputs found

    Cellular response to micropatterned growth promoting and inhibitory substrates

    Get PDF
    BACKGROUND: Normal development and the response to injury both require cell growth, migration and morphological remodeling, guided by a complex local landscape of permissive and inhibitory cues. A standard approach for studying by such cues is to culture cells on uniform substrates containing known concentrations of these molecules, however this method fails to represent the molecular complexity of the natural growth environment. RESULTS: To mimic the local complexity of environmental conditions in vitro, we used a contact micropatterning technique to examine cell growth and differentiation on patterned substrates printed with the commonly studied growth permissive and inhibitory substrates, poly-L-lysine (PLL) and myelin, respectively. We show that micropatterning of PLL can be used to direct adherence and axonal outgrowth of hippocampal and cortical neurons as well as other cells with diverse morphologies like Oli-neu oligodendrocyte progenitor cell lines and fibroblast-like COS7 cells in culture. Surprisingly, COS7 cells exhibited a preference for low concentration (1 pg/mL) PLL zones over adjacent zones printed with high concentrations (1 mg/mL). We demonstrate that micropatterning is also useful for studying factors that inhibit growth as it can direct cells to grow along straight lines that are easy to quantify. Furthermore, we provide the first demonstration of microcontact printing of myelin-associated proteins and show that they impair process outgrowth from Oli-neu oligodendrocyte precursor cells. CONCLUSION: We conclude that microcontact printing is an efficient and reproducible method for patterning proteins and brain-derived myelin on glass surfaces in order to study the effects of the microenvironment on cell growth and morphogenesis

    Micropatterning of hippocampal neurons : characterization and implications for studying synaptogenesis

    No full text
    During development of the nervous system, formation of specific connections between nerve cells depends on the stability of growing axons to reach appropriate target cells and form synapses. In culture, hippocampal neurons form numerous synapses by developing axonal and dendritic extensions. To elucidate principles of neuronal signaling and network establishment, creation of neuronal networks in which connectivity and pathways can be experimentally controlled is of great interest. In the present study we used a microcontact printing technique to control and study neurite outgrowth of hippocampal neurons in vitro. My preliminary results show that hippocampal neurons follow the microcontact printed pattern of poly-D-lysine (PDL). In doing so, neurons retain their morphology with normal subcellular distribution of various cell adhesion and synaptic molecules. However, the distribution of various axonal or dendrite components is altered. Hence we have developed a system in which isolated axons and dendrites align with inputs from very few neurons. With this technique we intend to study axon-dendrite communications on a spatially restricted and defined substrate

    Radiomics approaches to predict PD-L1 and PFS in advanced non-small cell lung patients treated with immunotherapy: a multi-institutional study

    No full text
    Abstract With the increasing use of immune checkpoint inhibitors (ICIs), there is an urgent need to identify biomarkers to stratify responders and non-responders using programmed death-ligand (PD-L1) expression, and to predict patient-specific outcomes such as progression free survival (PFS). The current study is aimed to determine the feasibility of building imaging-based predictive biomarkers for PD-L1 and PFS through systematically evaluating a combination of several machine learning algorithms with different feature selection methods. A retrospective, multicenter study of 385 advanced NSCLC patients amenable to ICIs was undertaken in two academic centers. Radiomic features extracted from pretreatment CT scans were used to build predictive models for PD-L1 and PFS (short-term vs. long-term survivors). We first employed the LASSO methodology followed by five feature selection methods and seven machine learning approaches to build the predictors. From our analyses, we found several combinations of feature selection methods and machine learning algorithms to achieve a similar performance. Logistic regression with ReliefF feature selection (AUC = 0.64, 0.59 in discovery and validation cohorts) and SVM with Anova F-test feature selection (AUC = 0.64, 0.63 in discovery and validation datasets) were the best-performing models to predict PD-L1 and PFS. This study elucidates the application of suitable feature selection approaches and machine learning algorithms to predict clinical endpoints using radiomics features. Through this study, we identified a subset of algorithms that should be considered in future investigations for building robust and clinically relevant predictive models

    The prognostic impact of KRAS, TP53, STK11 and KEAP1 mutations and their influence on the NLR in NSCLC patients treated with immunotherapy

    No full text
    Background: PD-L1 expression is used to predict NSCLC response to ICIs, but its performance is suboptimal. The impact of KRAS mutations in these patients is unclear. Studies evaluating co-mutations in TP53, STK11 and KEAP1 as well as the NLR showed that they may predict the benefit of ICIs. Patients & methods: This is a retrospective study of patients with NSCLC treated with ICIs at the CHUM between July 2015 and June 2020. OS and PFS were compared using Kaplan-Meier and logrank methods. Co-mutations in TP53, STK11 and KEAP1 as well as the NLR were accounted for. ORR and safety were compared using Wald method. Results: From 100 patients with known KRAS status, 50 were mutated (KRASMut). Mutation in TP53, STK11 and KEAP1 were present, and their status known in, respectively, 19/40 (47.5 %), 8/39 (20.5 %) and 4/38 (10.5 %) patients. STK11Mut and KEAP1Mut were associated with shorter overall survival when compared with wild type tumors (respectively median OS of 3.3 vs 20.4, p = 0.0001 and 10.1 vs 17.7, p = 0.24). When KRAS status was compounded with STK11/KEAP1, KRASMut trended to a better prognosis in STK11+KEAP1WT tumors (median OS 21.1 vs 15.8 for KRASWT, p = 0.15), but not for STK11+/-KEAP1Mut tumors. The NLR was strongly impacted by STK11 (6.0Mut vs 3.6WT, p = 0.014) and TP53 (3.2Mut vs 4.8WT, p = 0.048), but not by KEAP1 or KRAS mutations. Conclusion: STK11Mut and KEAP1Mut are adverse predictors of ICI therapy benefit. The NLR is strongly impacted by STK11Mut but not by KEAP1Mut, suggesting differences in their resistance mechanism. In STK11-KEAP1WT tumors, KRASMut seem associated with improved survival in NSCLC patients treated with ICIs. MicroAbstract: Response of NSCLC to immunotherapy is not easily predictable. We conducted a retrospective study in 100 patients with NSCLC and a known KRAS status. By accounting for different co-mutations, KRAS mutation was found to be associated with a better median overall survival in STK11 and KEAP1 wild-type tumors (21.1 vs 15.8, p = 0.15). NLR was impacted by STK11, but not KEAP1 mutation, suggesting a difference in their resistance mechanism

    A Natural Polyphenol Exerts Antitumor Activity and Circumvents Anti–PD-1 Resistance through Effects on the Gut Microbiota

    No full text
    International audienceAbstract Several approaches to manipulate the gut microbiome for improving the activity of cancer immune-checkpoint inhibitors (ICI) are currently under evaluation. Here, we show that oral supplementation with the polyphenol-rich berry camu-camu (CC; Myrciaria dubia) in mice shifted gut microbial composition, which translated into antitumor activity and a stronger anti–PD-1 response. We identified castalagin, an ellagitannin, as the active compound in CC. Oral administration of castalagin enriched for bacteria associated with efficient immunotherapeutic responses (Ruminococcaceae and Alistipes) and improved the CD8+/FOXP3+CD4+ ratio within the tumor microenvironment. Moreover, castalagin induced metabolic changes, resulting in an increase in taurine-conjugated bile acids. Oral supplementation of castalagin following fecal microbiota transplantation from ICI-refractory patients into mice supported anti–PD-1 activity. Finally, we found that castalagin binds to Ruminococcus bromii and promoted an anticancer response. Altogether, our results identify castalagin as a polyphenol that acts as a prebiotic to circumvent anti–PD-1 resistance. Significance: The polyphenol castalagin isolated from a berry has an antitumor effect through direct interactions with commensal bacteria, thus reprogramming the tumor microenvironment. In addition, in preclinical ICI-resistant models, castalagin reestablishes the efficacy of anti–PD-1. Together, these results provide a strong biological rationale to test castalagin as part of a clinical trial. This article is highlighted in the In This Issue feature, p. 87
    corecore