6 research outputs found

    Castor Stearoyl-ACP Desaturase Can Synthesize a Vicinal Diol by Dioxygenase Chemistry

    No full text
    In previous work, we identified a triple mutant of the castor (Ricinus communis) stearoyl-Acyl Carrier Protein desaturase (T117R/G188L/D280K) that, in addition to introducing a double bond into stearate to produce oleate, performed an additional round of oxidation to convert oleate to a trans allylic alcohol acid. To determine the contributions of each mutation, in this work we generated individual castor desaturase mutants carrying residue changes corresponding to those in the triple mutant and investigated their catalytic activities. We observed that T117R, and to a lesser extent D280K, accumulated a novel product, namely erythro-9,10-dihydroxystearate, that we identified via its methyl ester through gas chromatography-mass spectrometry and comparison with authentic standards. The use of 18O2 labeling showed that the oxygens of both hydroxyl moieties originate from molecular oxygen rather than water. Incubation with an equimolar mixture of 18O2 and 16O2 demonstrated that both hydroxyl oxygens originate from a single molecule of O2, proving the product is the result of dioxygenase catalysis. Using prolonged incubation, we discovered that wild-type castor desaturase is also capable of forming erythro-9,10-dihydroxystearate, which presents a likely explanation for its accumulation to ∌0.7% in castor oil, the biosynthetic origin of which had remained enigmatic for decades. In summary, the findings presented here expand the documented constellation of di-iron enzyme catalysis to include a dioxygenase reactivity in which an unactivated alkene is converted to a vicinal diol

    Search for gravitational waves from Scorpius X-1 with a hidden Markov model in O3 LIGO data

    Get PDF
    Results are presented for a semicoherent search for continuous gravitational waves from the low-mass x-ray binary Scorpius X-1, using a hidden Markov model (HMM) to allow for spin wandering. This search improves on previous HMM-based searches of Laser Interferometer Gravitational-Wave Observatory data by including the orbital period in the search template grid, and by analyzing data from the latest (third) observing run. In the frequency range searched, from 60 to 500 Hz, we find no evidence of gravitational radiation. This is the most sensitive search for Scorpius X-1 using a HMM to date. For the most sensitive subband, starting at 256.06 Hz, we report an upper limit on gravitational wave strain (at 95% confidence) of h 95 % 0 = 6.16 × 10 − 26 , assuming the orbital inclination angle takes its electromagnetically restricted value Îč = 4 4 ° . The upper limits on gravitational wave strain reported here are on average a factor of ∌ 3 lower than in the second observing run HMM search. This is the first Scorpius X-1 HMM search with upper limits that reach below the indirect torque-balance limit for certain subbands, assuming Îč = 4 4 °

    First narrow-band search for continuous gravitational waves from known pulsars in advanced detector data

    No full text
    International audienceSpinning neutron stars asymmetric with respect to their rotation axis are potential sources of continuous gravitational waves for ground-based interferometric detectors. In the case of known pulsars a fully coherent search, based on matched filtering, which uses the position and rotational parameters obtained from electromagnetic observations, can be carried out. Matched filtering maximizes the signal-to-noise (SNR) ratio, but a large sensitivity loss is expected in case of even a very small mismatch between the assumed and the true signal parameters. For this reason, narrow-band analysis methods have been developed, allowing a fully coherent search for gravitational waves from known pulsars over a fraction of a hertz and several spin-down values. In this paper we describe a narrow-band search of 11 pulsars using data from Advanced LIGO’s first observing run. Although we have found several initial outliers, further studies show no significant evidence for the presence of a gravitational wave signal. Finally, we have placed upper limits on the signal strain amplitude lower than the spin-down limit for 5 of the 11 targets over the bands searched; in the case of J1813-1749 the spin-down limit has been beaten for the first time. For an additional 3 targets, the median upper limit across the search bands is below the spin-down limit. This is the most sensitive narrow-band search for continuous gravitational waves carried out so far

    First low-frequency Einstein@Home all-sky search for continuous gravitational waves in Advanced LIGO data

    No full text
    International audienceWe report results of a deep all-sky search for periodic gravitational waves from isolated neutron stars in data from the first Advanced LIGO observing run. This search investigates the low frequency range of Advanced LIGO data, between 20 and 100 Hz, much of which was not explored in initial LIGO. The search was made possible by the computing power provided by the volunteers of the Einstein@Home project. We find no significant signal candidate and set the most stringent upper limits to date on the amplitude of gravitational wave signals from the target population, corresponding to a sensitivity depth of 48.7  [1/Hz]. At the frequency of best strain sensitivity, near 100 Hz, we set 90% confidence upper limits of 1.8×10-25. At the low end of our frequency range, 20 Hz, we achieve upper limits of 3.9×10-24. At 55 Hz we can exclude sources with ellipticities greater than 10-5 within 100 pc of Earth with fiducial value of the principal moment of inertia of 1038  kg m2

    Search for intermediate mass black hole binaries in the first observing run of Advanced LIGO

    No full text
    International audienceDuring their first observational run, the two Advanced LIGO detectors attained an unprecedented sensitivity, resulting in the first direct detections of gravitational-wave signals produced by stellar-mass binary black hole systems. This paper reports on an all-sky search for gravitational waves (GWs) from merging intermediate mass black hole binaries (IMBHBs). The combined results from two independent search techniques were used in this study: the first employs a matched-filter algorithm that uses a bank of filters covering the GW signal parameter space, while the second is a generic search for GW transients (bursts). No GWs from IMBHBs were detected; therefore, we constrain the rate of several classes of IMBHB mergers. The most stringent limit is obtained for black holes of individual mass 100  M⊙, with spins aligned with the binary orbital angular momentum. For such systems, the merger rate is constrained to be less than 0.93  Gpc−3 yr−1 in comoving units at the 90% confidence level, an improvement of nearly 2 orders of magnitude over previous upper limits

    Search for intermediate-mass black hole binaries in the third observing run of Advanced LIGO and Advanced Virgo

    No full text
    International audienceIntermediate-mass black holes (IMBHs) span the approximate mass range 100−105 M⊙, between black holes (BHs) that formed by stellar collapse and the supermassive BHs at the centers of galaxies. Mergers of IMBH binaries are the most energetic gravitational-wave sources accessible by the terrestrial detector network. Searches of the first two observing runs of Advanced LIGO and Advanced Virgo did not yield any significant IMBH binary signals. In the third observing run (O3), the increased network sensitivity enabled the detection of GW190521, a signal consistent with a binary merger of mass ∌150 M⊙ providing direct evidence of IMBH formation. Here, we report on a dedicated search of O3 data for further IMBH binary mergers, combining both modeled (matched filter) and model-independent search methods. We find some marginal candidates, but none are sufficiently significant to indicate detection of further IMBH mergers. We quantify the sensitivity of the individual search methods and of the combined search using a suite of IMBH binary signals obtained via numerical relativity, including the effects of spins misaligned with the binary orbital axis, and present the resulting upper limits on astrophysical merger rates. Our most stringent limit is for equal mass and aligned spin BH binary of total mass 200 M⊙ and effective aligned spin 0.8 at 0.056 Gpc−3 yr−1 (90% confidence), a factor of 3.5 more constraining than previous LIGO-Virgo limits. We also update the estimated rate of mergers similar to GW190521 to 0.08 Gpc−3 yr−1.Key words: gravitational waves / stars: black holes / black hole physicsCorresponding author: W. Del Pozzo, e-mail: [email protected]† Deceased, August 2020
    corecore