930 research outputs found

    Ultracold homonuclear and heteronuclear collisions in metastable helium

    Full text link
    Scattering and ionizing cross sections and rates are calculated for ultracold collisions between metastable helium atoms using a fully quantum-mechanical close-coupled formalism. Homonuclear collisions of the bosonic 4{}^{4}He∗+4^{*} +{}^{4}He∗^{*} and fermionic 3{}^{3}He∗+3^{*} + {}^{3}He∗^{*} systems, and heteronuclear collisions of the mixed 3{}^{3}He∗+4^{*} +{}^{4}He∗^{*} system, are investigated over a temperature range 1 μ\muK to 1 K. Carefully constructed Born-Oppenheimer molecular potentials are used to describe the electrostatic interaction between the colliding atoms, and complex optical potentials used to represent loss through ionization from the 1,3Σ{}^{1,3}\Sigma states. Magnetic spin-dipole mediated transitions from the 5Σ{}^{5}\Sigma state are included and results reported for spin-polarized and unpolarized systems. Comparisons are made with experimental results, previous semi-classical models, and a perturbed single channel model.Comment: 14 pages, 9 figure

    Photoassociation spectra and the validity of the dipole approximation for weakly bound dimers

    Full text link
    Photoassociation (PA) of ultracold metastable helium to the 2s2p manifold is theoretically investigated using a non-perturbative close-coupled treatment in which the laser coupling is evaluated without assuming the dipole approximation. The results are compared with our previous study [Cocks and Whittingham, Phys. Rev. A 80, 023417 (2009)] that makes use of the dipole approximation. The approximation is found to strongly affect the PA spectra because the photoassociated levels are weakly bound, and a similar impact is predicted to occur in other systems of a weakly bound nature. The inclusion or not of the approximation does not affect the resonance positions or widths, however significant differences are observed in the background of the spectra and the maximum laser intensity at which resonances are discernable. Couplings not satisfying the dipole selection rule |J-1| <= J' <= |J+1| do not lead to observable resonances.Comment: 5 pages, 2 figures; Minor textual revision

    Laser Intensity Dependence of Photoassociation in Ultracold Metastable Helium

    Get PDF
    Photoassociation of spin-polarized metastable helium to the three lowest rovibrational levels of the J=1, 0u+0_u^+ state asymptoting to 2s3s {}^{3}S1+2p3_{1}+2p {}^{3}P0_{0} is studied using a second-order perturbative treatment of the line shifts valid for low laser intensities, and two variants of a non-perturbative close-coupled treatment, one based upon dressed states of the matter plus laser system, and the other on a modified radiative coupling which vanishes asymptotically, thus simulating experimental conditions. These non-perturbative treatments are valid for arbitrary laser intensities and yield the complete photoassociation resonance profile. Both variants give nearly identical results for the line shifts and widths of the resonances and show that their dependence upon laser intensity is very close to linear and quadratic respectively for the two lowest levels. The resonance profiles are superimposed upon a significant background loss, a feature for this metastable helium system not present in studies of photoassociation in other systems, which is due to the very shallow nature of the excited state 0u+0_u^+ potential. The results for the line shifts from the close-coupled and perturbative calculations agree very closely at low laser intensities.Comment: 14 pages, 7 figures, title altered, text reduce

    Suppression of Phase Separation in LiFePO4 Nanoparticles During Battery Discharge

    Full text link
    Using a novel electrochemical phase-field model, we question the common belief that LixFePO4 nanoparticles separate into Li-rich and Li-poor phases during battery discharge. For small currents, spinodal decomposition or nucleation leads to moving phase boundaries. Above a critical current density (in the Tafel regime), the spinodal disappears, and particles fill homogeneously, which may explain the superior rate capability and long cycle life of nano-LiFePO4 cathodes.Comment: 27 pages, 8 figure

    Predicting mental imagery based BCI performance from personality, cognitive profile and neurophysiological patterns

    Get PDF
    Mental-Imagery based Brain-Computer Interfaces (MI-BCIs) allow their users to send commands to a computer using their brain-activity alone (typically measured by ElectroEncephaloGraphy— EEG), which is processed while they perform specific mental tasks. While very promising, MI-BCIs remain barely used outside laboratories because of the difficulty encountered by users to control them. Indeed, although some users obtain good control performances after training, a substantial proportion remains unable to reliably control an MI-BCI. This huge variability in user-performance led the community to look for predictors of MI-BCI control ability. However, these predictors were only explored for motor-imagery based BCIs, and mostly for a single training session per subject. In this study, 18 participants were instructed to learn to control an EEG-based MI-BCI by performing 3 MI-tasks, 2 of which were non-motor tasks, across 6 training sessions, on 6 different days. Relationships between the participants’ BCI control performances and their personality, cognitive profile and neurophysiological markers were explored. While no relevant relationships with neurophysiological markers were found, strong correlations between MI-BCI performances and mental-rotation scores (reflecting spatial abilities) were revealed. Also, a predictive model of MI-BCI performance based on psychometric questionnaire scores was proposed. A leave-one-subject-out cross validation process revealed the stability and reliability of this model: it enabled to predict participants’ performance with a mean error of less than 3 points. This study determined how users’ profiles impact their MI-BCI control ability and thus clears the way for designing novel MI-BCI training protocols, adapted to the profile of each user

    Spatiotemporal Patterns in Nest Box Occupancy by Tree Swallows Across North America

    Get PDF
    Data from the North American Breeding Bird Survey (BBS) suggest that populations of aerial insectivorous birds are declining, particularly in northeastern regions of the continent, and particularly since the mid-1980s. Species that use nest boxes, such as Tree Swallows (Tachycineta bicolor), may provide researchers with large data sets that better reveal finer-scale geographical patterns in population trends. We analyzed trends in occupancy rates for ca. 40,000 Tree Swallow nest-box-years from 16 sites across North America. The earliest site has been studied intensively since 1969 and the latest site since 2004. Nest box occupancy rates declined significantly at five of six (83%) sites east of -78° W longitude, whereas occupancy rates increased significantly at four of ten sites (40%) west of -78° W longitude. Decreasing box occupancy trends from the northeast were broadly consistent with aspects of a previous analysis of BBS data for Tree Swallows, but our finding of instances of increases in other parts of the continent are novel. Several questions remain, particularly with respect to causes of these broad-scale geographic changes in population densities of Tree Swallows. The broad geographic patterns are consistent with a hypothesis of widespread changes in climate on wintering, migratory, or breeding areas that in turn may differentially affect populations of aerial insects, but other explanations are possible. It is also unclear whether these changes in occupancy rates reflect an increase or decrease in overall populations of Tree Swallows. Regardless, important conservation steps will be to unravel causes of changing populations of aerial insectivores in North America

    Lithium storage mechanisms in purpurin based organic lithium ion battery electrodes

    Get PDF
    Current lithium batteries operate on inorganic insertion compounds to power a diverse range of applications, but recently there is a surging demand to develop environmentally friendly green electrode materials. To develop sustainable and eco-friendly lithium ion batteries, we report reversible lithium ion storage properties of a naturally occurring and abundant organic compound purpurin, which is non-toxic and derived from the plant madder. The carbonyl/hydroxyl groups present in purpurin molecules act as redox centers and reacts electrochemically with Li-ions during the charge/discharge process. The mechanism of lithiation of purpurin is fully elucidated using NMR, UV and FTIR spectral studies. The formation of the most favored six membered binding core of lithium ion with carbonyl groups of purpurin and hydroxyl groups at C-1 and C-4 positions respectively facilitated lithiation process, whereas hydroxyl group at C-2 position remains unaltered
    • …
    corecore