66 research outputs found

    Aluminum Borate Nanowires from the Pyrolysis of Polyaminoborane Precursors

    Get PDF
    Polyaminoboranes [N(R)H-BH2]n (1: R = H, 2: R = Me) were pyrolyzed on a range of substrates: silicon, metal foils (stainless steel, nickel, and rhodium), and sapphire wafers, as well as on Al2O3 and AlN powders.</p

    Ferrocene-Containing Polycarbosilazanes via the Alkaline-Earth-Catalyzed Dehydrocoupling of Silanes and Amines

    Get PDF
    We report the use of the alkaline-earth (Ae) metal-catalyzed dehydrocoupling of silanes and amines for the synthesis of ferrocene-containing polycarbosilazanes. The barium complex [Ba(N(SiMe 3) 2) 2¡(THF) 2] catalyzed the dehydrocoupling of the hydrosilane FeCp(CpSiPhH 2) (1) with 1,4-(H 2NCH 2) 2C 6H 4 under mild conditions to give a polycarbosilazane with pendant ferrocene groups. The polymer could be readily cross-linked by the addition of phenylsilane to the unquenched reaction mixture. Well-defined polycarbosilazanes with ferrocene in the main chain were also obtained from the dehydrocoupling of hydrosilanes Fe(Cp(SiPhH 2)) 2 (3) and Fe(Cp(SiMe 2H)) 2 (IX) with 1,4-(H(Me)NCH 2) 2C 6H 4 and 1,4-(H 2NCH 2) 2C 6H 4, respectively. Crystalline monomeric analogues, FeCp(Cp(SiPh(NHBn) 2)) (2, Bn = CH 2(C 6H 5)), and Fe(Cp(SiPh(NHBn) 2)) 2 (4), were also obtained via the dehydrocoupling benzylamine with 1 and 3, respectively. The barium-catalyzed dehydrocoupling of diaminoferrocene with Ph 2SiH 2 or Ph(Rc)SiH 2 (6, Rc = (C 5H 4)Ru(C 5H 5)) did not result in polymer, but instead in the formation of the silazane-bridged ansa-[3]ferrocenophanes (Fe(ν-C 5H 4NH) 2SiPh 2) (5) and (Fe(ν-C 5H 4NH) 2SiPh(Rc)) (7), respectively. Both polymeric and molecular products were electrochemically investigated, and the polymers proved to be promising precursors to magnetic iron-containing ceramics in yields of up to 64%. </p

    Ferrocene-Containing Polycarbosilazanes via the Alkaline-Earth-Catalyzed Dehydrocoupling of Silanes and Amines

    Get PDF
    We report the use of the alkaline-earth (Ae) metal-catalyzed dehydrocoupling of silanes and amines for the synthesis of ferrocene-containing polycarbosilazanes. The barium complex [Ba(N(SiMe 3) 2) 2¡(THF) 2] catalyzed the dehydrocoupling of the hydrosilane FeCp(CpSiPhH 2) (1) with 1,4-(H 2NCH 2) 2C 6H 4 under mild conditions to give a polycarbosilazane with pendant ferrocene groups. The polymer could be readily cross-linked by the addition of phenylsilane to the unquenched reaction mixture. Well-defined polycarbosilazanes with ferrocene in the main chain were also obtained from the dehydrocoupling of hydrosilanes Fe(Cp(SiPhH 2)) 2 (3) and Fe(Cp(SiMe 2H)) 2 (IX) with 1,4-(H(Me)NCH 2) 2C 6H 4 and 1,4-(H 2NCH 2) 2C 6H 4, respectively. Crystalline monomeric analogues, FeCp(Cp(SiPh(NHBn) 2)) (2, Bn = CH 2(C 6H 5)), and Fe(Cp(SiPh(NHBn) 2)) 2 (4), were also obtained via the dehydrocoupling benzylamine with 1 and 3, respectively. The barium-catalyzed dehydrocoupling of diaminoferrocene with Ph 2SiH 2 or Ph(Rc)SiH 2 (6, Rc = (C 5H 4)Ru(C 5H 5)) did not result in polymer, but instead in the formation of the silazane-bridged ansa-[3]ferrocenophanes (Fe(ν-C 5H 4NH) 2SiPh 2) (5) and (Fe(ν-C 5H 4NH) 2SiPh(Rc)) (7), respectively. Both polymeric and molecular products were electrochemically investigated, and the polymers proved to be promising precursors to magnetic iron-containing ceramics in yields of up to 64%. </p

    “Cross” Supermicelles via the Hierarchical Assembly of Amphiphilic Cylindrical Triblock Comicelles

    Get PDF
    Self-assembled “cross” architectures are well-known in biological systems (as illustrated by chromosomes, for example); however, comparable synthetic structures are extremely rare. Herein we report an in depth study of the hierarchical assembly of the amphiphilic cylindrical P–H–P triblock comicelles with polar (P) coronal ends and a hydrophobic (H) central periphery in a selective solvent for the terminal segments which allows access to “cross” supermicelles under certain conditions. Well-defined P–H–P triblock comicelles M­(PFS-<i>b</i>-PtBA)-<i>b</i>-M­(PFS-<i>b</i>-PDMS)-<i>b</i>-M­(PFS-<i>b</i>-PtBA) (M = micelle segment, PFS = polyferrocenyldimethylsilane, PtBA = poly­(<i>tert</i>-butyl acrylate), and PDMS = polydimethylsiloxane) were created by the living crystallization-driven self-assembly (CDSA) method. By manipulating two factors in the supermicelles, namely the H segment-solvent interfacial energy (through the central H segment length, <i>L</i><sub>1</sub>) and coronal steric effects (via the PtBA corona chain length in the P segment, <i>L</i><sub>2</sub> related to the degree of polymerization DP<sub>2</sub>) the aggregation of the triblock comicelles could be finely tuned. This allowed a phase-diagram to be constructed that can be extended to other triblock comicelles with different coronas on the central or end segment where “cross” supermicelles were exclusively formed under predicted conditions. Laser scanning confocal microscopy (LSCM) analysis of dye-labeled “cross” supermicelles, and block “cross” supermicelles formed by addition of a different unimer to the arm termini, provided complementary characterization to transmission electron microscopy (TEM) and dynamic light scattering (DLS) and confirmed the existence of these “cross” supermicelles as kinetically stable, micron-size colloidally stable structures in solution

    Microfibres and macroscopic films from the coordination-driven hierarchical self-assembly of cylindrical micelles

    Get PDF
    Anisotropic nanoparticles prepared from block copolymers are of growing importance as building blocks for the creation of synthetic hierarchical materials. However, the assembly of these structural units is generally limited to the use of amphiphilic interactions. Here we report a simple, reversible coordination-driven hierarchical self-assembly strategy for the preparation of micron-scale fibres and macroscopic films based on monodisperse cylindrical block copolymer micelles. Coordination of Pd(0) metal centres to phosphine ligands immobilized within the soluble coronas of block copolymer micelles is found to induce intermicelle crosslinking, affording stable linear fibres comprised of micelle subunits in a staggered arrangement. The mean length of the fibres can be varied by altering the micelle concentration, reaction stoichiometry or aspect ratio of the micelle building blocks. Furthermore, the fibres aggregate on drying to form robust, self-supporting macroscopic micelle-based thin films with useful mechanical properties that are analogous to crosslinked polymer networks, but on a longer length scale

    Nanostructured Bimetallic Block Copolymers as Precursors to Magnetic FePt Nanoparticles

    Get PDF
    Phase-separated block copolymers (BCPs) that function as precursors to arrays of FePt nanoparticles (NPs) are of potential interest for the creation of media for the next-generation high-density magnetic data storage devices. A series of bimetallic BCPs has been synthesized by incorporating a complex containing Fe and Pt centers into the coordinating block of four different poly­(styrene-<i>b</i>-4-vinylpyridine)­s (PS-<i>b</i>-P4VPs, <b>P1–P4</b>). To facilitate phase separation for the resulting metalated BCPs (<b>PM1–PM4</b>), a loading of the FePt-bimetallic complex corresponding to ca. 20% was used. The bulk and thin-film self-assembly of these BCPs was studied by transmission electron microscopy (TEM) and atomic force microscopy, respectively. The spherical and cylindrical morphologies observed for the metalated BCPs corresponded to those observed for the metal-free BCPs. The products from the pyrolysis of the BCPs in bulk were also characterized by TEM, powder X-ray diffraction, and energy-dispersive X-ray spectroscopy, which indicated that the FePt NPs formed exist in an fct phase with average particle sizes of ca. 4–8 nm within a carbonaceous matrix. A comparison of the pyrolysis behavior of the metalated BCP (<b>PM3</b>), the metalated <b>P4VP</b> homopolymer (<b>PM5</b>), and the molecular model organometallic complex revealed the importance of using a nanostructured BCP approach for the synthesis of ferromagnetic FePt NPs with a smaller average NP size and a close to 1:1 Fe/Pt stoichiometric ratio

    A General, Rhodium-Catalyzed, Synthesis of Deuterated Boranes and N-Methyl Polyaminoboranes

    Get PDF
    The rhodium complex [Rh(Ph2PCH2CH2CH2PPh2)(η6‐FC6H5)][BArF4], 2, catalyzes BH/BD exchange between D2 and the boranes H3B⋅NMe3, H3B⋅SMe2 and HBpin, facilitating the expedient isolation of a variety of deuterated analogues in high isotopic purities, and in particular the isotopologues of N‐methylamine‐borane: R3B⋅NMeR2 1‐dx (R=H, D; x=0, 2, 3 or 5). It also acts to catalyze the dehydropolymerization of 1‐dx to give deuterated polyaminoboranes. Mechanistic studies suggest a metal‐based polymerization involving an unusual hybrid coordination insertion chain‐growth/step‐growth mechanism
    • …
    corecore