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Abstract

The internal structure and cross sectional geometry of fibre-like poly(3-hexylthiophene)-

based block copolymer micelles has been determined using small- and wide-angle X-ray

scattering (SAXS and WAXS respectively) techniques alongside electron and atomic

force microscopies. WAXS of concentrated micellar solutions demonstrated that the

block copolymers form crystalline-core micelles in solvents selective for the corona-

forming block. Furthermore, by generating macroscopic fibres from micellar solutions,

it was possible to align the micelles and discern the type and orientation of the unit

cell within the core. Using the unit cell information gained from the wide-angle mea-

surements, in conjunction with the structural insights gained from the microscopy
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techniques, it was possible to form a complete picture of the cross-sectional geome-

try of the micelles, whereby the polymer chains lie perpendicular to the long axis of

the micelle core and do not undergo chain-folding. Finally, this information was used

to propose a self-assembly mechanism and to construct and validate a model for the

small-angle scattering data, revealing the inherent flexibility of the micelles.

Introduction

Due to the impressive combination of stability,1 high field-effect mobility2 and solution pro-

cessability3 π-conjugated poly(3-alkylthiophene)s (P3AT)s have generated significant aca-

demic and industrial interest, leading to the development of P3AT-based organic electronic

devices such as solar cells4 and field effect transistors.5 The optimisation of such devices,

however, relies on either manipulating the diffusion of excitons or balancing charge carrier

transport, both of which require control over the supramolecular structure.6,7 One method

for achieving this control has been through covalently linking the P3AT to a more flexible

polymer chain, forming a rod-coil block copolymer. Given appropriate block lengths and

processing conditions, these have been shown to phase-segregate in the bulk or thin films

to form lamellar or fibre-like morphologies with crystalline polythiophene domains.8–11 A

further advantage of block copolymers over the corresponding homopolymers is the addi-

tional colloidal stability imparted by the coblock, enabling solution-based self-assembly and

processing techniques.

Block copolymers with a crystallisable core-forming segment have been shown to be highly

amenable to solution phase self-assembly.12 Work done on block copolymers containing the

crystalline metalloblock poly(ferrocenyldimethylsilane) (PFS)13 for example, shows that it is

not only possible to control the morphology by varying block ratios,14,15 but also to precisely

tune the dimensions via a technique known as living crystallisation-driven self-assembly (liv-

ing CDSA).16 Using synchrotron small- and wide-angle X-ray scattering (SAXS and WAXS

respectively) it was possible to determine both the crystal structure and cross-sectional geom-
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etry of the micelle core.17 The high degree of morphological and length control coupled with

knowledge of the internal structure subsequently enabled the fabrication a wide variety of

complex nano-architectures including patchy micelles,18 branched micelles,19 supermicelles20

and even cross supermicelles.21 This technique is not just limited to metalloblocks; recently

an expanding number of di- and triblock copolymers that contain crystalline components

have been shown to self-assemble in solution to afford cylindrical or elongated structures

with dimensional control, including: polyethylene,22–25 poly(ε-caprolactone),26,27 polythio-

phenes,28–34 polyselenophene,35 poly(phenylene vinylene),36 and smectic liquid crystalline

polymers.37 In principle, these materials should also serve as effective building blocks for the

construction of 1-D nanostructures by living CDSA. In the case of P3ATs however, seeded

growth was limited to lengths < 320 nm,31 and growth via self-seeding to < 700 nm.32

To understand these observations and be able to further develop this technique, it is first

necessary to elucidate the internal structure and micelle morphology.

Previous work on the solution phase self-assembly of P3AT-based block copolymers in

solvents selective for the amorphous corona-forming block have tended to result in fibre-like

micelles, as characterised via transmission electron microscopy (TEM) or atomic force micro-

scopic (AFM) imaging techniques.9,38,39 A similar morphology is also found in P3AT block

copolymers self-assembled in good solvents,8,40,41 solvent mixtures42,43 via solvent or temper-

ature annealing10,11,44 and from a polymer melt.9 X-ray or electron diffraction experiments

have indicated a crystal structure similar to that found in bulk P3AT homopolymer,8,9,11

however, the orientation of the unit cell with respect to the micelle could only be inferred

rather than measured directly. Small-angle scattering of P3AT-based micelles in solution has

not been attempted to date. In this paper, TEM, AFM, solution SAXS and solution and

fibre WAXS were conducted in order to form a complete picture of the internal and cross-

sectional structure and self-assembly mechanisms of P3AT-based block copolymer micelles,

which provides insight into the self-assembly mechanism. It is hoped that this investigation

will inform and stimulate future work on the optimisation of P3AT-based block copolymer
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structures formed in solution.

Results

Synthesis and Self-Assembly

The block copolymers used in this investigation were synthesised using previously reported

methods31,32,45–47 and a full account of the synthesis and characterisation is given in the

Supporting Information. Briefly, the P3HT block was prepared via Grignard metathasis

of 2,5-dibromo-3-alkylthiophene and the resultant polymer was end-functionalised with an

alkynyl group. This was then coupled with the azide-terminated coblock prepared via a liv-

ing anionic polymerisation in a separate step. The diblock copolymers were then dissolved in

tetrahydrofuran (THF) and passed through a size-exclusion chromatography (SEC) column

in order to remove the unreacted P3HT homopolymer. The relative amounts of homopoly-

mer impurity remaining in the block copolymer (BCP) material after purification were deter-

mined, via an analysis of the gel-permeation chromatography (GPC) chromatograms, to be

4% and less than 1% for the P3HT-b-PS and P3HT-b-PI materials respectively (details and

further discussion are provided on page S15 of the Supporting Information). Table 1 shows

an overview of the measured block lengths and polydispersities. The micelle self-assembly

was carried out according to the self-seeding protocols formulated by Qian et al.32 It should

be noted that the focus of this work is on the structure of the core and the cross-sectional

geometry, the micelle lengths and length polydispersities were therefore not studied in detail,

but fall in the range 100-1000 nm.

Wide-Angle X-ray Scattering

In order to measure the crystal structure of the polythiophene core and, in particular, the

orientation of the unit cell, it was originally intended align a lyotropic liquid crystalline

micelle dispersion in an electric-, magnetic- or flow-field. As this was not possible, due to
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Figure 1: Structures of the copolymers used in this work.

the absence of any observed liquid crystalline phases (vide infra), an alternative method was

required to produce the required alignment. Inspired by the strong alignment achieved by the

extrusion of molten P3HT homopolymer to form macroscopic fibres,48,49 highly concentrated

micelle dispersions (150 mg/mL) were produced by slowly allowing solvent to evaporate from

stock solutions of known concentration. For P3HT29-b-PS145 at 150 mg/ml, the solution was

sufficiently viscous and amenable to fibre formation such that extended macroscopic micellar

fibres could be drawn from solution using the tip of a hypodermic needle. The P3HT29-b-

PI190 material was not conducive to fibre formation by this means, which is probably due to

the low glass transition temperature of the PI. From scanning electron microscopy (SEM)

measurements, the fibres were determined to be 8-9 µm in diameter (Figure S10). The

internal structure of the micelles was then determined using wide-angle X-ray scattering

(WAXS) measurements. Results from the P3HT-b-PS fibre are shown in Figure 2 and it can

immediately be seen that the internal structure is well aligned.

Table 1: Summary of polymer characterisation data.

Mn P3HT block PDI Mn coblocka PDIa block ratiob diblock PDIa

P3HT29-b-PS145
d 4 900c 1.05c 15 100 1.09 1:5 1.09

P3HT29-b-PI210 4 900c 1.05c 14 300 1.08 1:7.2 1.16

a Determined by triple detection GPC analysis. b Determined by ratio of Mn(P3HT block) and
Mn(coblock). c Determined by MALDI-TOF MS. d Numbers in subscript denote the number average
degree of polymerization.
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Figure 2: (a) Wide-angle scattering pattern from fibre composed of P3HT29–b–PS145 mi-
celles. (b) Corresponding azimuthally integrated data taken from 10◦ segments oriented
perpendicular to the fibre axis (0◦) and parallel to the fibre axis (90◦). Also shown for
comparison is the wide-angle scattering from the precursor material P3HT29 integrated over
360◦.

By simultaneously fitting all of the observable peaks in the azimuthally regrouped data,

both crystalline and amorphous, to a series of Pearson Type VII distributions using a non-

linear Levenberg-Marquardt algorithm via the Origin software package, it was possible to

extract peak positions and widths. Analysis of the crystalline peak positions and symmetry

of the scattering pattern, revealed a monoclinic unit cell, shown in Figure 3, as has pre-

viously been found in bulk and thin film P3AT materials50–53 and predicted by ab-initio

calculations.54 The lattice constants were found by refining the unit cell (details in the Sup-

porting Information) and are given in Table 2. The indices for the most prominent peaks

are shown in Figure 2(a). The orientation of the (100) peaks perpendicular to the fibre draw

axis indicates that the a vector of the unit cell is perpendicular the draw direction of the

fibre. Similarly, the orientation of the (020) peaks parallel to the fibre axis indicates that

the b vector is parallel to the draw direction. Importantly from an applications perspective,

this means that the π-stacking direction is along the fibre axis and the polythiophene chains

(along the c direction) are also oriented perpendicular to the draw direction. To determine
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Table 2: Summary of fitting to wide-angle scattering data. The uncertainties on the coher-
ence length values were calculated by propagating the uncertainties associated with the peak
widths, determined by the fits.

Unit cell dimensions (nm) Coherence Lengths (nm)
Material a b c γ d100 d020

P3HT29-b-PS145

Fibre 1.62 0.76 0.74 93.1 4.3 ± 0.1 10.6 ± 0.7
Dry Film 1.62 0.77 0.74 94.5 5.2 ± 0.1 15.5 ± 1.1
In Solution 1.71 0.76 0.75 95.7 3.0 ± 0.1 12.1 ± 2.2
P3HT29-b-PI190
Dry Film 1.72 0.77 0.74 95.6 2.7 ± 0.1 12.6 ± 1.4
In Solution 1.77 0.78 0.76 97.4 2.9 ± 0.1 7.7 ± 2.2
P3HT29 Homopolymer
Dry 1.61 0.77 0.71 95.1 14.7 ± 0.1 4.9 ± 0.1

the degree of orientation of the micelles within the fibres, the data around the (100) peak

were radially regrouped and analysed55 using Hermann’s orientation parameter:

S =
1

2

〈
3 cos2 θ − 1

〉
(1)

where θ is the angle of misorientation with respect to the draw axis. The value of 0.53

for the P3HT-b-PS fibre indicates good alignment and is comparable to pure P3HT fibres

extruded from the melt phase at high temperatures (0.45-0.78).48,49

To investigate how the crystal structure in the micelles differs from the precursor P3HT29

material and whether it is affected by the drying or fibre-drawing process, WAXS measure-

ments were also carried out on dry micelle and P3HT homopolymer films, drop cast onto

a Kapton substrate from high concentration samples (100 mg/mL) of micelles in solution.

The azimuthally averaged data and fits are shown in Figure 2 (homopolymer) and Figure

S11. The unit cell dimensions are generally in good agreement with literature values for

equivalent bulk51–53,56 and thin film50 P3HT. Although the unit cell dimensions of the mi-

cellar material and the homopolymer are very similar, it can be seen in Figure 2(b) that

whilst the homopolymer exhibits a strong (100) reflection, as well as clearly identifiable 2nd
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and 3rd order peaks, the (100) reflection in the micellar material is much broader and the

higher order peaks are almost entirely absent in all of the samples measured. This indicates

that the crystalline core of the micelles is short in the (100) direction. There is also a slight

increase in the unit cell dimensions, particularly along the (100) axis, to larger values in sol-

vated systems compared to dry micelle fibres and films, suggesting a small degree of solvent

penetration into the alkyl chains of the P3AT. In order to quantify the approximate extent

of the crystalline domains in the micelle core, the Scherrer formula for peak broadening has

been applied:

L =
5.57

∆Q
(2)

where ∆Q is the FWHM (full width at half-maximum) of the peak and L is the coherence

length of the crystalline domains in the direction perpendicular to the Bragg planes. The

extent of the crystalline domains may be dictated either by finite size effects, in which

case the coherence length equates to the physical dimensions of the sample, or alternatively

imperfections in the crystalline correlation. From the AFM and SAXS results (vide infra),

the peak broadening along the (100) axis has been ascribed to finite size effects and it can be

seen from Table 2 that this implies a micelle thickness of only two or three non-interdigitated

P3AT chains. The size of the crystalline domains in the homopolymer material along the

(100) axis is equivalent to approximately nine layers of chains which would explain the

absence of strong higher order peaks in the micellar material. As the TEM images in Figure

4 (a,d) show ribbon-like structures extending over 100 nm, the broadening of the (020)

peaks must be due to imperfections in the π-π stacking. In this case, the coherence length

in the micellar material is larger, equivalent to 20-40 π-stacked chains, much larger than

the stacks of ∼13 chains in the homopolymer film. These results show that the addition of

the corona-forming block and the subsequent self-assembly in the selective solvent inhibit

layer formation in the (100) direction and aid the formation of ribbons with long, coherent

π-stacked domains. A schematic of the postulated self-assembled structure is given in Figure

3.
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Figure 3: The derived monoclinic unit cell for the P3HT micelle cores and schematic of two
layers of π-stacked P3HT29. The fibre draw axis is parallel to the b vector.

Transmission Electron Microscopy

Although the (012) peak is sufficiently prominent to allow for the extraction of the lattice pa-

rameter c (along the axis of the polythiophene chains), there are no strong Bragg reflections

from the (00l) lattice planes. Consequently, it was not possible to determine a coherence

length along the c-direction from the WAXS data. In order to determine the micelle dimen-

sions along the axis of the polythiophene chains and indeed to confirm that the structures

analysed in the WAXS measurements were in micellar form, the self-assembled structures

were imaged using transmission electron microscopy (TEM). The transmission electron mi-

crographs, shown in Figure 4, confirm that in solvents selective for the corona-forming block,

the polythiophene-containing block copolymers form polydisperse fibre or ribbon-like struc-

tures. In the higher magnification images, the visibility of the grains that comprise the

amorphous carbon film beneath the polythiophene micelles, suggests that the structures are

thin in the out-of-plane direction, in line with the short coherence length along the (h00)

direction determined from the WAXS data. Taking the FWHM of the intensity values from

individual pixels (Figure S12), the width of the fibres was estimated to be approximately
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a b

c d

Figure 4: TEM images of self-assembled polythiophene-based block copolymers. (a) and (c)
P3HT29-b-PS145 self-assembled in butyl acetate, (b) and (d) P3HT29-b-PI210 self-assembled
in hexane. Scale bars represent 100 nm.

10-13 nm, commensurate with the contour length for a fully extended polythiophene chain

(L29: 10.7 nm, L31: 11.9 nm). Theses values were calculated by multiplying the number

average degree of polymerisation by c/2, as determined from WAXS measurements.

Despite the self-seeding protocols employed to control the micelle lengths, it can be seen

in Figure 4 that the micelles with polyisoprene coronae are subject to a high degree of

length polydispersity. The relatively poor self-assembly properties of P3HT29-b-PI210 are in

marked contrast to those of PFS-b-PI, a material which has consistently been used to produce

monodisperse near-cylindrical micelles over a wide range of block ratios.17,57,58 The reasons

for this difference may be explained with reference to the respective solubility parameters

of the polymers and the solvents. Briefly, if a polymer and a solvent have similar solubility

parameters, they are likely to be miscible and vice-versa. In this case, the solubility of

P3HT in hexane is expected to be very poor (δP3HT: ∼19 MPa1/2; δhexane: 14.9 MPa1/2)59,60
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a b c d

e f

Figure 5: AFM images (a-d) and height profiles (e,f) of self-assembled polythiophene-based
block copolymers. (a, b and e) P3HT29–b–PS145, (c, d and f) P3HT29–b–PI210. Scale bars
represent 100 nm.

relative to that of PFS. Butyl acetate (17.4 MPa1/2)60 has a closer solubility parameter to

that of P3HT, and the structures self-assembled in this solvent exhibits a greater proportion

of elongated micelles to short micellar fragments than is observed in hexane (Figure 4). A

mechanism for this is proposed in the discussion section. Attempts to improve the solubility

of the P3HT block further by addition of another miscible solvent resulted in appreciable

amounts of non-crystallised block copolymer unimer in solution.

Atomic Force Microscopy

In order to quantify the dimensions of the polythiophene cores along the (100) axis, the

micelles were also imaged using atomic force microscopy (AFM). Representative AFM im-

ages for each of the materials, shown in Figure 5, confirm that the micelles are thin in the
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out-of-plane direction, with thicknesses varying between 1.6 and 7.0 nm. Using the unit

cell dimensions from the WAXS data vide supra, it is possible to quantify the number of

polythiophene lamellae that comprise the micelle thickness. The maximum number of lay-

ers in each micelle is relatively consistent between the different core- and corona-forming

materials, varying between 1 and 4 for all micelles measured, being similar to the solid-

state nanofibres formed from other P3AT and P3AT block copolymer systems.11,61 This is

thought to be a direct result of the self-assembly process; in contrast to PFS-based block

copolymers which undergo chain folding on addition to the micelle ends, forming extended

cylinders,16,62 P3HT chains below a molecular weight of approx. 10 kDa do not chain fold,

instead forming lamellar crystals via the stacking of fully-extended chains.61 Density func-

tional theory (DFT) calculations on the self-assembly of P3HT homopolymers have found

that, at finite temperatures, the energy associated with interactions between hexyl chains is

∼5 times lower than that associated with π − π interactions.63 Thus, when the π − π inter-

action is sufficiently strong to overcome any tendency for the hexyl chains to interdigitate,

the extended polythiophene chains self-assemble to form stacks in the direction orthogonal

to the aromatic rings. These stacks were then shown by molecular dynamics to assemble

further into layers with the hexyl chains comprising the two largest surfaces. The energy

gain associated with each subsequent lamination of these layers only increases rather slowly

with the addition of each layer.63 This is expected to favour a low degree of aggregation

with significant polydispersity for low concentrations.64 It is worth considering this two step

self-assembly process in light of previous work identifying a tendency of P3HT-based block

copolymers to undergo homogeneous nucleation in solution.30 This would initially give rise

to a polydisperse population of unilamellar π-stacks which would gradually assemble into

ribbons with incomplete layers. Such behaviour would explain the observations that not

only does the thickness of the micelles vary between integer numbers of lamellae along their

length, but also that the steps in thickness are 10s to 100s nm long.
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Small-Angle Scattering

Finally, with a view to characterising the micelle morphology at an ensemble level, SAXS

and SANS measurements were made on low concentration micelle solutions (5 mg/mL). In

order to extract the micelle dimensions, it is necessary to construct an appropriate model

that captures the features of the experimental data. Based on the WAXS, TEM and AFM

observations, as well as previous small-angle scattering studies on similar systems by New-

bloom et al.,65 four models were constructed to fit the data: rigid rods with rectangular

cross-sections, rigid rods with rectangular cross-sections and a corona extending on either

side, rigid rods with rectangular cross-sections, an extended corona and polydispersity in the

thickness direction and finally, the flexible rods with rectangular cross-sections, an extended

corona and polydispersity in the thickness direction. A full description of the models is

given in pages S16 - S20 of the Supporting Information and a graphical representation is

shown in Figure 6. Fitting was carried out using a non-linear least-squares method allowing

the core thickness, core width and scaling factor to vary (along with the polydispersity in

thickness, corona length and persistence length where included). All other parameters were

held constant. The azimuthally averaged data and model fits for the P3HT-b-PS micelles

are shown in Figure 7a. In order to establish whether the fitted parameters could be re-

produced in other, similar models and were not artefacts resulting from the approximations

and construction of this particular model, the same data were fitted to a model for flexible
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Figure 6: Scheme outlining the parameters in the model used to fit the SAXS data. Not
shown in the scheme is the persistence length, a measure of the flexibility along the length
of the micelle.
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rods with elliptical cross-sections in the SasView fitting programme. The fits are shown in

Figure 7b. It can immediately be seen in Figure 7a that it is not possible to accurately

capture the features of the data without accounting for flexibility in the model. Figure 7b

shows that the fits to an elliptical cross-section and a rectangular cross-section give almost

identical results. The fitted parameters, given in Table 3, indicate that the models are in

agreement on both the dimensions and degree of flexibility. With an overall aspect ratio

of over 10:1, it can be expected that scattering from rods with very elliptical cross-sections

and rods with polydisperse rectangular cross-sections will appear very similar and based on

the fits in Figure 7b alone, it is not possible to distinguish the models. However, given that

there is a near-cuboidal monoclinic unit cell in the core and no evidence of chain folding,

coupled with good agreement of the TEM and AFM results with the fitted parameters for

the thickness and width, a rectangular cross-section with an extended corona is considered

the most likely morphology in solution. It should be noted that the fitted values indicate

that the corona is shorter than the core, despite having a longer contour length. This may

be due to a number of factors: firstly, the corona blocks are present in the form of two fringes

whilst there is only one core. Secondly, these fringes are not crystalline and may spread out

above and below core. Finally, for simplicity, the corona chain density was fitted as a block

of uniform density. In reality the corona will become very diffuse towards the ends of the

fringes, so the 6.7 nm will be an underestimate of the furthest extent of the corona.

The micelle dimensions in Table 3 suggest that, in line with the WAXS, TEM and AFM

results, the micelles are indeed very thin. As the electron density of the hexyl chains is

very close to that of the solvents, they will, to a certain degree be contrast matched in

the scattering data. Under this assumption, the reported thickness of ∼1.7 nm for the

P3HT materials would correspond to micelles with two layers of polythiophene. Fitting the

persistence length gives a value of 2.7 nm and given that the core is crystalline in solution

and P3AT chains are relatively rigid along their backbone, it is likely that this flexibility

manifests along the micelle length. In view of the of the low values determined for the core
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Rigid rods with rectangular cross-section

Rigid rods with rectangular cross-section + corona

Rigid rods with rectangular cross-section + corona + thickness polydispersity

Flexible rods with rectangular cross-section + corona + thickness polydispersity

Flexible rods with elliptical cross-section

a b

Figure 7: Plots of azimuthally averaged intensity vs Q from the small-angle scattering for 5
mg/mL dispersions of P3HT-b-PS micelles. The lines are fits to the data using the models
described in the text. (a) shows a comparison of the models featuring rectangular cross-
sections and (b) shows the comparison between the flexible rectangular and flexible elliptical
models.

thickness and the well-solvated coronae, it is perhaps not surprising that the micelles are

flexible in solution. This is however, in marked contrast to PFS-based cylindrical micelles

where persistence lengths are of the order of 1 µm,57 and rigidity is conferred by chain-folding

within the core and the formation of a near circular cross-section.

Small-angle scattering was also conducted on the P3HT-b-PI micelles however, it was not

possible to fit the data to the model outlined above without either appreciable discrepancies

at the higher scattering vectors or implausibly small core widths. This is likely due to the

presence of the shorter micelle fragments visible in Figure 4, which are not accounted for in

the model. For completeness, the data and fitted parameters are given in Figure S13 and

Table S1 respectively.

To determine the presence and nature of any lyotropic liquid-crystalline phases such as

those observed in PFS-based systems,66,67 SAXS and polarising optical microscopy (POM)

measurements were also made on samples with higher concentrations (25, 50 and 100 mg/mL).

None of the samples measured showed any optical birefringence or long-range order, nor did

they exhibit any alignment in electric fields up to 8 Vµm-1 or in flow cells with shear rates
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Table 3: Comparison of parameters fitted to P3HT-b-PS small-angle scattering data using
different models.

Model Parameter Value (nm)
Flexible rods with elliptical cross-sections

Minor axis 1.8 ± 0.2
Major axis 23.6 ± 2.8
Persistence length 2.7 ± 0.2

Flexible rods with rectangular cross-sections
Thickness 1.7 ± 0.1
Thickness Polydispersity 0.2 ± 0.1
Width 11.0 ± 1.6
Corona Length 6.7 ± 1.4
Persistence length 2.8 ± 0.3

up to approximately 20 s-1. The absence of any liquid crystalline phases was ascribed to the

high degree of flexibility in the micelles. This is very different to the behaviour of the more

rigid PFS system.67

Discussion

The fibre-like, ribbon or lamellar structure of the P3HT-based block copolymer systems

studied in this work agrees well with the findings of previous studies on polythiophene block

copolymer self-assembly in thin film,8,10,40,68–71 bulk9,11,72 and solution states.29–32 Not only

do these materials share a common general morphology, they also share a number of more

subtle common features: they are usually not straight, they have rough, irregular edges and

although it is neither quantified nor commented upon, in most cases, AFM images appear to

shown that the thickness of the structures is not constant. In light of the structure proposed

in this work, these features can be easily explained: the fibres are not straight as they are

inherently very flexible, they have rough edges as the polythiophene chains are fully extended

and due to polydispersity are not all of equal length, and the thickness is not constant as

the π−π stacking is energetically more favourable than the ‘laminating’ interaction between

the alkyl chains.
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It is also instructive to revisit the results of previous solution-based growth experiments.

Using seeded growth, whereby block copolymer in a small amount of common solvent is

added to a population of seed micelles in a solvent selective for the corona-forming block,

it is only possible to obtain short (< 300 nm) fibres. As the selective solvent is poor for

the polythiophene block, this results in a large initial interfacial free energy in the polymer-

solvent system, and therefore a higher driving force for phase separation and a concomitant

higher energy barrier for reorganisation. The effects of this are thought to be two-fold;

firstly, this increases the likelihood of homogeneous nucleation, and secondly, as the energy

barrier to rearrangement is higher, any mismatch or defects due to different orientations or

chain lengths are frozen into the structure. In addition, in order to minimise unfavourable

polythiophene-solvent interactions, it is energetically favourable for the well-solvated block

to cover the exposed micelle ends, which will also have the effect of slowing the micelle

growth. Together, these effects result in the observed short fibres and ultimately explain the

limited efficacy of the seeded growth method. It is worth noting that these arguments are,

in principle, applicable to any block copolymers with a crystallisable core-forming segment

including those that are amenable to the seeded growth technique (e.g. PFS-based micelles).

A key difference between these systems is the crystal structure; PFS chains undergo chain

folding on addition to the micelle ends and form a quasi-hexagonal crystalline structure in

the core,62 the energy barrier to the reorganisation of small chain segments within the core

is therefore much lower than for the analogous P3HT-based block copolymer which does not

undergo chain folding at the molecular weights studied. Furthermore, as a consequence of

the respective symmetries of the two unit cells, PFS self-assembles via, in essence, a one step

process, whereas that of P3HT requires two steps, and the energy associated with lamination

(thickness) is not independent of size. It would appear that this latter physical circumstance

is not conducive to the formation of uniform structures.

In contrast to the seeded-growth method, the self-seeding approach, whereby the block

copolymer is heated to dissolve the less well crystallised portion of the fibres and then slowly
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cooled in a marginal solvent, results in much longer fibres. In this case, the thermal energy

supplied to the system allows the polythiophene chains to reorganise and such that they do

not become kinetically trapped in a less well-ordered metastable state.32,73 Similar arguments

also apply for self-assembly via dialysis into a selective solvent and slow evaporation of a

good solvent from a mixture of good and selective solvents.31

Summary

A detailed study of the crystal structure and morphology of self-assembled P3HT-containing

block copolymer micelles has been conducted using small- and wide-angle X-ray scattering,

TEM and AFM characterisation techniques. By taking advantage of the strong alignment of

the micelles in fibres drawn from a concentrated solution of P3HT29-b-PS145, it was possible

to determine that the P3HT chains pack into a monoclinic unit cell with the π-stacking

direction along the length of the micelles. Furthermore, it was found that, compared to the

P3HT29 precursor, the coherence lengths of the crystalline domains in the micelles along

the π-stacking direction is enhanced by a factor of 2-3 compared to that in P3HT29 films,

and this persists in solution. From TEM measurements it was established that the width

of the micelles is approximately equal to the contour length of the polythiophene chains

which indicates that the P3AT materials do not undergo chain folding. Finally, the AFM

and SAXS results revealed that the micelles are very thin, not of uniform thickness and very

flexible in solution.

Viewed in concert, these results present a rather complex picture of polythiophene-

containing block copolymer micelles. As opposed to the near-cylindrical structures most

commonly formed by the analogous PFS-containing block copolymers, P3HT micelles form

long, flexible ribbon-like structures with rectangular cross-sections of varying thickness and

are much less robust than their PFS counterparts.

This picture has provided an insight into the self-assembly mechanisms of P3HT-containing
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micelles and is placing DFT calculations on a firmer experimental basis. The results gained

in this study also highlight the importance of the solubility of P3HT in the selective solvent

and will inform future studies on tuning micelle properties. Using the methods outlined

in this paper it will be possible to directly relate the self-assembly parameters of any block

copolymer micelles formed via CDSA (e.g. solvent composition, annealing temperature, cool-

ing rates etc.) to the crystal structure and morphology of the resulting micelles. By forming

well-aligned fibres it should also be possible to perform macroscopic measurements on the

mechanical strength and electronic properties of the micelles, which will be of particular

importance for applications.
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(25) Schöbel, J.; Karg, M.; Rosenbach, D.; Krauss, G.; Greiner, A.; Schmalz, H. Patchy

Wormlike Micelles with Tailored Functionality by Crystallization-Driven Self-Assembly:

A Versatile Platform for Mesostructured Hybrid Materials. Macromolecules 2016, 49,

2761–2771.

(26) Du, Z.-X.; Xu, J.-T.; Fan, Z.-Q. Micellar Morphologies of Poly(ε-caprolactone)- b

-poly(ethylene oxide) Block Copolymers in Water with a Crystalline Core. Macro-

molecules 2007, 40, 7633–7637.

(27) Arno, M. C.; Inam, M.; Coe, Z.; Cambridge, G.; Macdougall, L. J.; Keogh, R.;

Dove, A. P.; O’Reilly, R. K. Precision Epitaxy for Aqueous 1D and 2D Poly(ε-

caprolactone) Assemblies. Journal of the American Chemical Society 2017, 139, 16980–

16985.

(28) Park, S.-J.; Kang, S.-G.; Fryd, M.; Saven, J. G.; Park, S.-J. Highly tunable photolumi-

nescent properties of amphiphilic conjugated block copolymers. Journal of the American

Chemical Society 2010, 132, 9931–3.

(29) Patra, S. K.; Ahmed, R.; Whittell, G. R.; Lunn, D. J.; Dunphy, E. L.; Winnik, M. A.;

Manners, I. Cylindrical micelles of controlled length with a π-conjugated polythiophene

core via crystallization-driven self-assembly. Journal of the American Chemical Society

2011, 133, 8842–5.

(30) Gilroy, J. B.; Lunn, D. J.; Patra, S. K.; Whittell, G. R.; Winnik, M. A.; Man-

ners, I. Fiber-like Micelles via the Crystallization-Driven Solution Self-Assembly

23



of Poly(3-hexylthiophene)- block -Poly(methyl methacrylate) Copolymers. Macro-

molecules 2012, 45, 5806–5815.

(31) Gwyther, J.; Gilroy, J. B.; Rupar, P. A.; Lunn, D. J.; Kynaston, E.; Patra, S. K.;

Whittell, G. R.; Winnik, M. A.; Manners, I. Dimensional Control of Block Copolymer

Nanofibers with a π-Conjugated Core: Crystallization-Driven Solution Self-Assembly of

Amphiphilic Poly(3-hexylthiophene)- b -poly(2-vinylpyridine). Chemistry - A European

Journal 2013, 19, 9186–9197.

(32) Qian, J.; Li, X.; Lunn, D. J.; Gwyther, J.; Hudson, Z. M.; Kynaston, E.; Rupar, P. A.;

Winnik, M. A.; Manners, I. Uniform, High Aspect Ratio Fiber-like Micelles and Block

Co-micelles with a Crystalline π-Conjugated Polythiophene Core by Self-Seeding. Jour-

nal of the American Chemical Society 2014, 136, 4121–4124.

(33) Kim, Y.-J.; Cho, C.-H.; Paek, K.; Jo, M.; Park, M.; Lee, N.-E.; Kim, Y.; Kim, B. J.;

Lee, E. Precise Control of Quantum Dot Location within the P3HT- b -P2VP/QD

Nanowires Formed by Crystallization-Driven 1D Growth of Hybrid Dimeric Seeds. Jour-

nal of the American Chemical Society 2014, 136, 2767–2774.

(34) He, L.; Pan, S.; Peng, J. Morphology control of poly(3-hexylthiophene)- b -

poly(ethylene oxide) block copolymer by solvent blending. Journal of Polymer Science

Part B: Polymer Physics 2016, 54, 544–551.

(35) Kynaston, E. L.; Gould, O. E. C.; Gwyther, J.; Whittell, G. R.; Winnik, M. A.; Man-

ners, I. Fiber-Like Micelles from the Crystallization-Driven Self-Assembly of Poly(3-

heptylselenophene)- block -Polystyrene. Macromolecular Chemistry and Physics 2015,

216, 685–695.

(36) Tao, D.; Feng, C.; Cui, Y.; Yang, X.; Manners, I.; Winnik, M. A.; Huang, X. Monodis-

perse Fiber-like Micelles of Controlled Length and Composition with an Oligo( p -

24



phenylenevinylene) Core via Living Crystallization-Driven Self-Assembly. Journal of

the American Chemical Society 2017, 139, 7136–7139.

(37) Li, X.; Jin, B.; Gao, Y.; Hayward, D. W.; Winnik, M. A.; Luo, Y.; Manners, I. Monodis-

perse Cylindrical Micelles of Controlled Length with a Liquid-Crystalline Perfluorinated

Core by 1D Self-Seeding. Angewandte Chemie International Edition 2016, 55, 11392–

11396.

(38) Kamps, A. C.; Fryd, M.; Park, S.-J. Hierarchical self-assembly of amphiphilic semicon-

ducting polymers into isolated, bundled, and branched nanofibers. ACS Nano 2012, 6,

2844–52.

(39) Ren, G.; Wu, P.-T.; Jenekhe, S. A. Solar Cells Based on Block Copolymer Semicon-

ductor Nanowires: Effects of Nanowire Aspect Ratio. ACS Nano 2011, 5, 376–384.

(40) Iovu, M. C.; Craley, C. R.; Jeffries-EL, M.; Krankowski, A. B.; Zhang, R.;

Kowalewski, T.; McCullough, R. D. Conducting Regioregular Polythiophene Block

Copolymer Nanofibrils Synthesized by Reversible Addition Fragmentation Chain Trans-

fer Polymerization (RAFT) and Nitroxide Mediated Polymerization (NMP). Macro-

molecules 2007, 40, 4733–4735.

(41) Choi, S. Y.; Lee, J. U.; Lee, J. W.; Lee, S.; Song, Y. J.; Jo, W. H.; Kim, S. H. Highly

Ordered Poly(3-hexylthiophene) Rod Polymers via Block Copolymer Self-Assembly.

Macromolecules 2011, 44, 1771–1774.

(42) Jin, S.-M.; Kim, I.; Lim, J. A.; Ahn, H.; Lee, E. Interfacial Crystallization-Driven As-

sembly of Conjugated Polymers/Quantum Dots into Coaxial Hybrid Nanowires: Eluci-

dation of Conjugated Polymer Arrangements by Electron Tomography. Advanced Func-

tional Materials 2016, 26, 3226–3235.

(43) Tu, G.; Li, H.; Forster, M.; Heiderhoff, R.; Balk, L. J.; Sigel, R.; Scherf, U. Am-

25



phiphilic conjugated block copolymers: Synthesis and solvent-selective photolumines-

cence quenching. Small 2007, 3, 1001–1006.

(44) Ho, C.-C.; Wu, S.-J.; Lin, S.-H.; Darling, S. B.; Su, W.-F. Kinetically Enhanced Ap-

proach for Rapid and Tunable Self-Assembly of Rod-Coil Block Copolymers. Macro-

molecular Rapid Communications 2015, 36, 1329–1335.
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