474 research outputs found

    Separating weak lensing and intrinsic alignments using radio observations

    Full text link
    We discuss methods for performing weak lensing using radio observations to recover information about the intrinsic structural properties of the source galaxies. Radio surveys provide unique information that can benefit weak lensing studies, such as HI emission, which may be used to construct galaxy velocity maps, and polarized synchrotron radiation; both of which provide information about the unlensed galaxy and can be used to reduce galaxy shape noise and the contribution of intrinsic alignments. Using a proxy for the intrinsic position angle of an observed galaxy, we develop techniques for cleanly separating weak gravitational lensing signals from intrinsic alignment contamination in forthcoming radio surveys. Random errors on the intrinsic orientation estimates introduce biases into the shear and intrinsic alignment estimates. However, we show that these biases can be corrected for if the error distribution is accurately known. We demonstrate our methods using simulations, where we reconstruct the shear and intrinsic alignment auto and cross-power spectra in three overlapping redshift bins. We find that the intrinsic position angle information can be used to successfully reconstruct both the lensing and intrinsic alignment power spectra with negligible residual bias.Comment: 17 pages, 10 figures, submitted to MNRA

    Master of Science

    Get PDF
    thesisSix metal boride compounds (AlB2, MgB2, Al0.5Mg0.5B2, AlB12, AlMgB14 and SiB6) with particle sizes between 10-20 m were synthesized for insensitive energetic fuel additives from stoichiometric physical mixtures of elemental powders by high temperature solid state reaction. B4C was also investigated as a lower cost source of boron in AlB2 synthesis and showed promise as a boron substitute. Thermal analysis confirmed that the formation of boride compounds from physical mixtures decreased sensitivity to low temperature oxidation over the aluminum standard. Both Al+2B and AlB2 were much less sensitive to moisture degradation than aluminum in high humidity (10-100% relative humidity) and high temperature (20-80°C) environments. AlB2 was determined to be safe to store for extended periods of time in cool, dry environments. Impact, friction and shock sensitivity testing indicated that AlB2 and MgB2 were less sensitive than aluminum. The activation energies for the oxidation of Al, B, Al+2B and AlB2 were determined through an isothermal, isoconversional method in N2-20%O2 and O2 at one atmosphere. An activation energy of 413 ± 20 kJ/mol was calculated for AlB2 in O2. The incorporation of magnesium and/or aluminum with boron increased its oxidation rate and overall conversion through the formation of metal-borate crystals (2Al2O3·B2O3 and 3MgO·B2O3) which removed liquid B2O3 from the surface of oxidizing particles. Aluminum also increased the oxidation efficiency of B4C by a similar mechanism. AlB2, MgB2 and Al0.5Mg0.5B2 oxidized to greater than 85% of their theoretical values while exhibiting decreased sensitivity to low temperature oxidation, making them top candidates for further energetic testing. Cylinder expansion testing of AlMgB14 showed little reaction of the boride material within seven volume expansions, corresponding to poor energetic performance. Detonation calorimetry of AlB2 and Al + 2B using proprietary energetic mixtures in an argon atmosphere showed that AlB2 reacted almost completely while Al + 2B did not. Future work should focus on testing the diboride materials and synthesizing and testing similar materials made from B4C

    Radio-Optical Galaxy Shape and Shear Correlations in the COSMOS Field using 3 GHz VLA Observations

    Full text link
    We present a weak lensing analysis of the 3 GHz VLA radio survey of the COSMOS field, which we correlate with overlapping HST-ACS optical observations using both intrinsic galaxy shape and cosmic shear correlation statistics. After cross-matching sources between the two catalogues, we measure the correlations of galaxy position angles and find a Pearson correlation coefficient of 0.14±0.030.14 \pm 0.03. This is a marked improvement from previous studies which found very weak, or non-existent correlations, and gives insight into the emission processes of radio and optical galaxies. We also extract power spectra of averaged galaxy ellipticities (the primary observable for cosmic shear) from the two catalogues, and produce optical-optical, radio-optical and radio-radio spectra. The optical-optical auto-power spectrum was measured to a detection significance of 9.80σ\sigma and is consistent with previous observations of the same field. For radio spectra (which we do not calibrate, given the unknown nature of their systematics), although we do not detect significant radio-optical (1.50σ\sigma) or radio-radio (1.45σ\sigma) EE-mode power spectra, we do find the EE-mode spectra to be more consistent with the shear signal expected from previous studies than with a null signal, and vice versa for BB-mode and EBEB cross-correlation spectra. Our results give promise that future radio weak lensing surveys with larger source number densities over larger areas will have the capability to measure significant weak lensing signals.Comment: 19 pages, 17 figures, accepted for publication in MNRA

    Estimating the weak-lensing rotation signal in radio cosmic shear surveys

    Full text link
    Weak lensing has become an increasingly important tool in cosmology and the use of galaxy shapes to measure cosmic shear has become routine. The weak-lensing distortion tensor contains two other effects in addition to the two components of shear: the convergence and rotation. The rotation mode is not measurable using the standard cosmic shear estimators based on galaxy shapes, as there is no information on the original shapes of the images before they were lensed. Due to this, no estimator has been proposed for the rotation mode in cosmological weak-lensing surveys, and the rotation mode has never been constrained. Here, we derive an estimator for this quantity, which is based on the use of radio polarisation measurements of the intrinsic position angles of galaxies. The rotation mode can be sourced by physics beyond Λ\LambdaCDM, and also offers the chance to perform consistency checks of Λ\LambdaCDM and of weak-lensing surveys themselves. We present simulations of this estimator and show that, for the pedagogical example of cosmic string spectra, this estimator could detect a signal that is consistent with the constraints from Planck. We examine the connection between the rotation mode and the shear BB-modes and thus how this estimator could help control systematics in future radio weak-lensing surveys

    Dynamic clay microstructures emerge via ion complexation waves

    Full text link
    Clays control carbon, water and nutrient transport in the lithosphere, promote cloud formation5 and lubricate fault slip through interactions among hydrated mineral interfaces. Clay mineral properties are difficult to model because their structures are disordered, curved and dynamic. Consequently, interactions at the clay mineral-aqueous interface have been approximated using electric double layer models based on single crystals of mica and atomistic simulations. We discover that waves of complexation dipoles at dynamically curving interfaces create an emergent long-range force that drives exfoliation and restacking over time- and length-scales that are not captured in existing models. Curvature delocalizes electrostatic interactions in ways that fundamentally differ from planar surfaces, altering the ratio of ions bound to the convex and concave sides of a layer. Multiple-scattering reconstruction of low-dose energy-filtered cryo electron tomography enabled direct imaging of ion complexes and electrolyte distributions at hydrated and curved mineral interfaces with {\aa}ngstrom resolution over micron length scales. Layers exfoliate and restack abruptly and repeatedly over timescales that depend strongly on the counterion identity, demonstrating that the strong coupling between elastic, electrostatic and hydration forces in clays promote collective reorganization previously thought to be a feature only of active matter

    Mathematical modelling of fibre-enhanced perfusion inside\ud a tissue-engineering bioreactor

    Get PDF
    We develop a simple mathematical model for forced flow of culture medium through a porous scaffold in a tissue- engineering bioreactor. Porous-walled hollow fibres penetrate the scaffold and act as additional sources of culture medium. The model, based on Darcy’s law, is used to examine the nutrient and shear-stress distributions throughout the scaffold. We consider several configurations of fibres and inlet and outlet pipes. Compared with a numerical solution of the full Navier–Stokes equations within the complex scaffold geometry, the modelling approach is cheap, and does not require knowledge of the detailed microstructure of the particular scaffold being used. The potential of this approach is demonstrated through quantification of the effect the additional flow from the fibres has on the nutrient and shear-stress distribution

    Frontiers of Biogeography:Taking its place as a journal of choice for the publication of high quality biogeographical research articles

    Get PDF
    Through this editorial we seek your support and engagement as authors, readers and reviewers as we take the next steps in developing Frontiers of Biogeography as a leading international journal of biogeography and related subdisciplines. Here we make the case for submitting your next contribution to this journal: affordable, gold libre, open access, with the support of a disciplinarily-informed editorial and review team, which returns benefits to the biogeography community.Peer Reviewe

    The role of algal organic matter in the separation of algae and cyanobacteria using the novel “Posi” - Dissolved air flotation process

    Get PDF
    Algae and cyanobacteria frequently require separation from liquid media in both water treatment and algae culturing for biotechnology applications. The effectiveness of cell separation using a novel dissolved air flotation process that incorporates positively charged bubbles (PosiDAF) has recently been of interest but has been shown to be dependent on the algae or cyanobacteria species tested. Previously, it was hypothesised that algal organic matter (AOM) could be impacting the separation efficiency. Hence, this study investigates the influence of AOM on cell separation using PosiDAF, in which bubbles are modified using a commercially available cationic polyelectrolyte poly(N, N-diallyl-N,N-dimethylammonium chloride) (PDADMAC). The separation of Chlorella vulgaris CS-42/7, Mychonastes homosphaera CS-556/01 and two strains of Microcystis aeruginosa (CS-564/01 and CS-555/1), all of which have similar cell morphology but different AOM character, was investigated. By testing the cell separation in the presence and absence of AOM, it was determined that AOM enhanced cell separation for all the strains but to different extents depending on the quantity and composition of carbohydrates and proteins in the AOM. By extracting AOM from the strain for which optimal separation was observed and adding it to the others, cell separation improved from 90%. This was attributed to elevated levels of acidic carbohydrates as well as glycoprotein-carbohydrate conjugations, which in turn were related to the nature and quantity of proteins and carbohydrates present in the AOM. Therefore, it was concluded that process optimisation requires an in-depth understanding of the AOM and its components. If culturing algae for biotechnology applications, this indicates that strain selection is not only important with respect to high value product content, but also for cell separation

    Plutonium coordination and redox chemistry with the CyMe4-BTPhen polydentate N-donor extractant ligand

    Get PDF
    Complexation of Pu(IV) with the actinide extractant CyMe4-BTPhen (2,9-bis(5,5,8,8-tetramethyl-5,6,7,8-tetrahydro-1,2,4-benzotriazin-3-yl)-1,10-phenanthroline) was followed by vis-NIR spectroscopy in acetonitrile solution. The solid-state structure of the crystallized product suggests that Pu(IV) is reduced to Pu(III) upon complexation. Analysis by DFT modeling is consistent with metal-based rather than ligand-based reduction
    corecore