81 research outputs found

    Assessing the Feasibility of Single Trace Power Analysis of Frodo

    Get PDF
    Lattice-based schemes are among the most promising post-quantum schemes, yet the effect of both parameter and implementation choices on their side-channel resilience is still poorly understood. Aysu et al. (HOST\u2718) recently investigated single-trace attacks against the core lattice operation, namely multiplication between a public matrix and a small secret vector, in the context of a hardware implementation. We complement this work by considering single-trace attacks against software implementations of ring-less LWE-based constructions. Specifically, we target Frodo, one of the submissions to the standardisation process of NIST, when implemented on an (emulated) ARM Cortex M0 processor. We confirm Aysu et al.\u27s observation that a standard divide-and-conquer attack is insufficient and instead we resort to a sequential, extend-and-prune approach. In contrast to Aysu et al. we find that, in our setting where the power model is far from being as clear as theirs, both profiling and less aggressive pruning are needed to obtain reasonable key recovery rates for SNRs of practical relevance. Our work drives home the message that parameter selection for LWE schemes is a double-edged sword: the schemes that are deemed most secure against (black-box) lattice attacks can provide the least security when considering side-channels. Finally, we suggest some easy countermeasures that thwart standard extend-and-prune attacks

    White matter changes in microstructure associated with a maladaptive response to stress in rats

    Get PDF
    In today's society, every individual is subjected to stressful stimuli with different intensities and duration. This exposure can be a key trigger in several mental illnesses greatly affecting one's quality of life. Yet not all subjects respond equally to the same stimulus and some are able to better adapt to them delaying the onset of its negative consequences. The neural specificities of this adaptation can be essential to understand the true dynamics of stress as well as to design new approaches to reduce its consequences. In the current work, we employed ex vivo high field diffusion magnetic resonance imaging (MRI) to uncover the differences in white matter properties in the entire brain between Fisher 344 (F344) and Sprague-Dawley (SD) rats, known to present different responses to stress, and to examine the effects of a 2-week repeated inescapable stress paradigm. We applied a tract-based spatial statistics (TBSS) analysis approach to a total of 25 animals. After exposure to stress, SD rats were found to have lower values of corticosterone when compared with F344 rats. Overall, stress was found to lead to an overall increase in fractional anisotropy (FA), on top of a reduction in mean and radial diffusivity (MD and RD) in several white matter bundles of the brain. No effect of strain on the white matter diffusion properties was observed. The strain-by-stress interaction revealed an effect on SD rats in MD, RD and axial diffusivity (AD), with lower diffusion metric levels on stressed animals. These effects were localized on the left side of the brain on the external capsule, corpus callosum, deep cerebral white matter, anterior commissure, endopiriform nucleus, dorsal hippocampus and amygdala fibers. The results possibly reveal an adaptation of the SD strain to the stressful stimuli through synaptic and structural plasticity processes, possibly reflecting learning processes.We thank Neurospin (high field MRI center CEA Saclay) for providing its support for MRI acquisition. JB was supported by grants from Fondation pour la Recherche Médicale (FRM) and Groupe Pasteur Mutualité (GPM). This work was supported by a grant from ANR (SIGMA). This work was performed on a platform of France Life Imaging (FLI) network partly funded by the grant ANR-11-INBS-0006. This work and RM were supported by a fellowship of the project FCT-ANR/NEU-OSD/0258/2012 founded by FCT/MEC (www.fct.pt) and by Fundo Europeu de Desenvolvimento Regional (FEDER). AC was supported by a grant from the Fondation NRJ.info:eu-repo/semantics/publishedVersio

    Prevention and Mitigation of Acute Radiation Syndrome in Mice by Synthetic Lipopeptide Agonists of Toll-Like Receptor 2 (TLR2)

    Get PDF
    Bacterial lipoproteins (BLP) induce innate immune responses in mammals by activating heterodimeric receptor complexes containing Toll-like receptor 2 (TLR2). TLR2 signaling results in nuclear factor-kappaB (NF-κB)-dependent upregulation of anti-apoptotic factors, anti-oxidants and cytokines, all of which have been implicated in radiation protection. Here we demonstrate that synthetic lipopeptides (sLP) that mimic the structure of naturally occurring mycoplasmal BLP significantly increase mouse survival following lethal total body irradiation (TBI) when administered between 48 hours before and 24 hours after irradiation. The TBI dose ranges against which sLP are effective indicate that sLP primarily impact the hematopoietic (HP) component of acute radiation syndrome. Indeed, sLP treatment accelerated recovery of bone marrow (BM) and spleen cellularity and ameliorated thrombocytopenia of irradiated mice. sLP did not improve survival of irradiated TLR2-knockout mice, confirming that sLP-mediated radioprotection requires TLR2. However, sLP was radioprotective in chimeric mice containing TLR2-null BM on a wild type background, indicating that radioprotection of the HP system by sLP is, at least in part, indirect and initiated in non-BM cells. sLP injection resulted in strong transient induction of multiple cytokines with known roles in hematopoiesis, including granulocyte colony-stimulating factor (G-CSF), keratinocyte chemoattractant (KC) and interleukin-6 (IL-6). sLP-induced cytokines, particularly G-CSF, are likely mediators of the radioprotective/mitigative activity of sLP. This study illustrates the strong potential of LP-based TLR2 agonists for anti-radiation prophylaxis and therapy in defense and medical scenarios

    Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases

    Get PDF
    The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular "reactive oxygen species" (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation). The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible. This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference
    corecore