
Assessing the Feasibility of Single Trace Power
Analysis of Frodo

Joppe W. Bos1, Simon Friedberger1,2, Marco Martinoli3, Elisabeth Oswald3,
and Martijn Stam3

1 NXP Semiconductors joppe.bos@nxp.com
2 KU Leuven - iMinds - COSIC simon.friedberger@esat.kuleuven.com

3 University of Bristol, United Kingdom
marco.martinoli, elisabeth.oswald, martijn.stam@bristol.ac.uk

Abstract. Lattice-based schemes are among the most promising post-
quantum schemes, yet the effect of both parameter and implementation
choices on their side-channel resilience is still poorly understood. Aysu et
al. (HOST’18) recently investigated single-trace attacks against the core
lattice operation, namely multiplication between a public matrix and
a “small” secret vector, in the context of a hardware implementation.
We complement this work by considering single-trace attacks against
software implementations of “ring-less” LWE-based constructions.
Specifically, we target Frodo, one of the submissions to the standardis-
ation process of NIST, when implemented on an (emulated) ARM Cor-
tex M0 processor. We confirm Aysu et al.’s observation that a standard
divide-and-conquer attack is insufficient and instead we resort to a se-
quential, extend-and-prune approach. In contrast to Aysu et al. we find
that, in our setting where the power model is far from being as clear as
theirs, both profiling and less aggressive pruning are needed to obtain
reasonable key recovery rates for SNRs of practical relevance. Our work
drives home the message that parameter selection for LWE schemes is
a double-edged sword: the schemes that are deemed most secure against
(black-box) lattice attacks can provide the least security when consid-
ering side-channels. Finally, we suggest some easy countermeasures that
thwart standard extend-and-prune attacks.

Keywords: Side-channel analysis · LWE · Frodo · Template attacks · Lattices

1 Introduction

Recent advances in quantum computing [7,8] have accelerated the research into
schemes which can be used as replacements for currently popular public-key
encryption, key-exchange and signature schemes, all of which are vulnerable to
quantum attacks. The attention of the cryptographic research community in this
direction is boosted by the current NIST standardisation process [16].

Investigating the security of new public-key cryptography proposals in dif-
ferent security settings is an important part of this standardisation process. The

The current document is the pre-proceeding version of the paper, which was
accepted at the Selected Areas in Cryptography (SAC) 2018 conference.

current trend, in the era of Internet of Things (IoT), is to connect more and more
devices and enable them to transmit sensitive data to other devices or the cloud.
These IoT devices can often be physically accessed by potential adversaries,
allowing for side-channel attacks. However, the challenges when implementing
these novel post-quantum schemes are not as well analysed as for the RSA or
ECC-based systems they aim to replace.

Over a third of the submissions to NIST’s standardisation process are lattice-
based constructions [16]. They come in a number of flavours, of which the two
dominant classes are those based on learning with errors (LWE [17]) and its vari-
ants (Ring-LWE [11] and Module-LWE [9]). For both scenarios, the key to be
recovered is typically a vector of relatively small integers, but the computations
involving this vector differ considerably: Ring-LWE and Module-LWE often rely
on the Number-Theoretic Transform (NTT) to compute polynomial multiplica-
tion, whereas standard LWE depends on textbook matrix–vector multiplication.

One of the standard LWE-based proposals is Frodo. Originally conceived as
a key agreement protocol it was expanded to a Key Encapsulation Mechanism
(KEM), for the later NIST submission [5,15]. Frodo relies on the equation B =
AS + E, where A,B,S, and E are all various matrices over Zq for q a power of
two. The dimensions of these matrices, the modulus q, as well as the distributions
from which the error E and the secret S are drawn, are all parameters to the
scheme. Overall, the Frodo designers proposed six concrete parameter sets, yet
the natural resistance of the corresponding matrix multiplication against side-
channel analysis is still understood only partially.

Recently, Aysu et al. [2] demonstrated the efficacy of horizontal Correlation
Power Analysis (CPA) in a single trace setting against Frodo’s matrix multipli-
cation AS when implemented in hardware. Their attack assumes knowledge of
the architecture in order to target specific intermediate registers, as well as that
the Hamming distance is a good approximation of their specific device’s leakage.
Even so, for a distinguisher to succeed, knowledge of the algorithm’s state so far
is required. Aysu et al. cope with this challenge by describing what is known as
an extend-and-prune strategy. Seemingly unaware that their method is essen-
tially part of the established methodology of template attacks [6], they do not
further explore challenges that may arise in contexts where the device’s leakage
is too far from Hamming weight/distance for an unprofiled method to work.

Our contribution. We fill this gap by investigating single-trace attacks against
software implementations of “ring-less” LWE-based constructions, as used by
Frodo. When Frodo is used as key agreement protocol, the secret S is ephemeral
and the calculation of AS + E that we target is only performed once (or twice),
resulting in only a single trace. This limited usage implies only a subset of side-
channel techniques apply. When Frodo is used as a KEM, the overall private
key (of the KEM) is used repeatedly for decapsulation and the usual techniques
relying on a variable number of traces do apply. However, even then our work
provides useful guidance on security, and indeed, we expect our results can be

2

translated to any “small secret” LWE scheme, that is any scheme where the
individual entries of S are “small” in the space over which the scheme is defined.

Even if only a single trace corresponding to AS+E is available, each element
in S is still used multiple times in the calculation of AS, enabling so called
horizontal differential power analysis. Here the single trace belonging to AS is cut
up into smaller subtraces corresponding to the constituent Zq operations. Hence,
the number of subtraces available for each targeted Zq element (of S) is bounded
by the dimension of the matrix A. For square A as given by the suggested
parameters, this immediately leads to a situation where high dimensions for
A, thus S, on the one hand imply more elements of S need to be recovered
(harder), yet on the other hand more subtraces per element are available (easier).
To complicate matters, the elements of S are chosen to be relatively small in
Zq, with the exact support differing per parameter set. All in all, the effect of
parameter selection on the natural side-channel resistance is multi-faceted and
potentially counterintuitive; we provide guidance in this respect in Section 5.

For our investigation, we opted for the ARM Cortex M0 as platform for
Frodo’s implementation. The Cortex-M family has high practical relevance in
the IoT panorama, where our choice for the M0 is primarily instigated by the
availability of the ELMO tool [13], which we use to simulate Frodo’s power
consumption (see Section 2 for details). We believe our results are representative
for other 32-bit ARM architectures as well.

Our first research question is how well the unprofiled correlation power analy-
sis, as successfully deployed by Aysu et al. [2] against a hardware implementation
of Frodo, works in our software-oriented context. The main operations relevant
for Frodo are Zq addition and multiplication, which are both known to be poor
targets for side-channel attacks [4,10]. This is usually compensated for by em-
ploying a larger number of traces and by using a power model sufficiently close
to the device’s leakage profile. The former is intrinsically not possible in the set-
ting we consider, while the latter necessarily requires a profiling phase in cases
where the leakage profile of a device is not well-known (as is the case for registers
leaking Hamming distance in Aysu et al.’s case).

Overall, we target up to three points of interest, corresponding to loading of a
secret value, the actual Zq multiplication, and updating an accumulator with the
resulting product. For a classical divide-and-conquer attack, where all positions
of the secret matrix S are attacked independently, the templates can easily be
profiled at the start, but as we find in Section 3, the resulting algorithmic variance
is too high to allow meaningful key recovery.

Therefore we switch to an extend-and-prune technique (Section 4), allowing
inclusion of predictions on intermediate variables (such us partial sums stored
into an accumulator). This approach drastically reduces the algorithmic variance
and hence increases the effective signal strength. We show how different pruning
strategies allow for a trade-off between performance and success, concluding that
for reasonable levels of success, this type of pruning needs to be less aggressive
than that employed by Aysu et al. [2]. We also find that of the two Frodo

3

parameter sets given in the NIST proposal, the one designed for higher security
is in fact the most vulnerable against our side-channel cryptanalysis.

We finish with a discussion on possible countermeasures (Section 5). In par-
ticular, we propose a simple alternative way of evaluating the matrix multiplica-
tion that frustrates the extend-and-prune attack, reintroducing the algorithmic
variance effectively for free. This deterministic method significantly improves the
security of what is otherwise still an unprotected implementation.

2 Preliminaries

Notation. Vectors are denoted by lower case boldface letters and the i-th com-
ponent of a vector v is v[i], where indexing starts at 1. Matrices are denoted
by upper case boldface letters and their elements are also indexed using square
brackets notation in row major order. The n-dimensional identity matrix is de-
noted by In.

Drawing a random sample x from a distribution D over a set S is denoted
by x←$D(S) or just by x←$D if the set is clear from the context. We denote
drawing a random vector of dimension n made of independent and identically
distributed random samples by x←$Dn(S). The support of D, i.e. the values to
which D assigns non-zero probability, is denoted by Supp(D).

2.1 Frodo: a LWE-based Key Agreement Protocol/KEM

Originally Frodo was conceived as a key agreement protocol [5]; in the later
NIST proposal [15], it was recast as a KEM. It derives its security from a variant
of Regev’s LWE concept [17], namely the decisional Matrix-LWE problem with
short secrets (Definition 1), which stipulates secrets and errors as matrices of
fixed dimensions, instead of vectors of arbitrary dimension.

Definition 1 ([5, Section 5.1]). Let n,m, q, n be positive integers and χ be a
distribution over Zq. Let A←$Um×n(Zq) where U is the uniform distribution,
E←$χm×n(Zq) and S←$χn×n(Zq). Defining B as B = AS + E, the decisional
Matrix-LWE problem with short secrets asks to distinguish (A,B) from (A,U),
where U←$Um×n(Zq).

Frodo can be instantiated with six different parameter sets, four proposed
in the original key agreement protocol [5] and two as part of the NIST submis-
sion [15]. Table 1 summarises them all. Matrix dimensions are specified, as well
as k, the cardinality of the support of χ. The latter distribution is a discrete
Gaussian centred at zero, with range [−η,+η] for η = (k− 1)/2. This effectively
specifies all possibilities for each secret entry.

The core operation of Frodo is the calculation of B← AS + E. Without loss
of generality, we will henceforth concentrate on only a single column of the secret
matrix S, which will be denoted by s. Thus we target the operation b← As+e,
where we try to recover the small value s for known A and b based on the leakage
from primarily the matrix–vector multiplication As. We note that, given A and

4

Name n q k

CCS1 352 211 7
CCS2 592 212 9
CCS3 752 215 11
CCS4 864 215 13
NIST1 640 215 23
NIST2 976 216 21

Table 1: Parameter sets for Frodo where k = |Supp(χ)|; for all of sets, m = n
and n̄ = 8.

b, it is possible to check whether a guess s is correct by checking whether b−As
is in the support of χ. This suffices with very high probability, because a wrong
s would make the result pseudorandom.

Our analysis of a single column recovery s could easily be extrapolated to the
recovery of the full secret matrix S by taking into account the number of columns
n and the fact that columns can be attacked independently. Furthermore, for
the original Frodo key agreement, a subsequent step in the protocol to arrive
at a joint secret, the so-called reconciliation, is component-wise. Consequently,
correctly recovering one column of S immediately translates to recovering part
of the eventual session key (between 8 and 32 bits, depending on the selected
parameter set). A similar argument applies to the public key encryption scheme
on which the KEM variant [15] is based. However, the introduction of hash
functions in the final KEM protocol structurally prevents such a threat and full
recovery of S is required.

While we focus on Frodo’s operation As, our results apply equally to the
transpose operation sᵀA, or indeed to any scenario where a small secret vector
is multiplied by a public matrix and there is a method to test (as in the case
for LWE) with high probability whether a candidate s is correct. While we
concentrate on the parameter sets relevant to Frodo (which has relatively leak-
free modular reductions due to its power-of-two modulus q), the techniques apply
to other parameter sets used in different LWE-based schemes as well.

Matrix–vector multiplication. Algorithm 1 contains the high level descrip-
tion of textbook matrix–vector multiplication. This is usually deployed as asymp-
totically faster methods have overhead which makes them unsuitable for the
matrix dimensions found in practical lattice-based schemes.

For every iteration of the outer loop, the accumulator sum is initialised to
zero and updated n times with as many Zq multiplications. This means that for
every secret entry s[i] an adversary can exploit n portions of the power trace,
namely each time it is used in Line 5, motivating the use of a horizontal attack.

Note that Line 5 does not include an explicit modular reduction. As the
modulus q is a power of two, the accumulator sum is allowed to exceed q and
will only be reduced modulo q when it is added to the error in Line 6. The

5

Algorithm 1 Matrix–vector multiplication as implemented in Frodo.

Input: A ∈ Zn×n
q ; s, e ∈ Zn

q

Output: b← As + e

1: b← e
2: for r = 1, . . . , n do
3: sum← 0
4: for i = 1, . . . , n do
5: sum← sum + A[r, i] · s[i]
6: b[r]← (b[r] + sum) mod q

7: return b

modular reduction itself boils down to truncation and similarly, in the earlier
Line 5 sum will of course be reduced modulo the word size, in our case 32 bits.

2.2 Template attacks

Template attacks were first introduced by Chari et al. [6]. The idea is that an
adversary creates statistical descriptions, called templates, of the device’s leakage
for specific intermediate values by profiling the target device (or an equivalent
one). Subsequently, one can use Bayesian methods (e.g. maximum likelihood
estimation) to determine which template best matches the observed leakage,
eventually leading to key recovery.

We consider two classes of template attack. For divide-and-conquer the secret
is split up into many sub-secrets that are recovered independently of each other,
and subsequently these sub-secrets are recombined. In our case, it would entail
recovering the components of the secret vector s independently of each other.
Divide-and-conquer is popular for instance in the context of AES-128 and has
the advantage that profiling can easily be done during a preprocessing stage.

Chari et al. already observed that for their use case (RC4), divide-and-
conquer was insufficient. Instead they suggested an extend-and-prune approach,
where the overall secret is still split up into many sub-secrets, but this time
they are recovered sequentially. As a result, when recovering the ith sub-secret,
it is possible to use knowledge of the preceding i− 1 sub-secrets to select more
potent templates. The total number of possible templates increases drastically
and, while it might still be just about feasible to generate them all as part of
preprocessing, it is more common to generate the actually required templates
on-the-fly [3].

We analyse both strategies. In Section 3 we attack the individual sub-secrets
independently using divide-and-conquer. This implies that the templates nec-
essarily cannot rely on the value of the accumulator sum as that depends on
all the previous sub-secrets. Subsequently, in Section 4, we consider the extend-
and-prune approach, generating templates on-the-fly, which allows us to profile
based on the (likely) correct value of the accumulator.

6

2.3 Experimental Setup

As target architecture for our experiments we chose the entry level ARM archi-
tecture, the Cortex series, because it represents a realistic target and is extremely
widely distributed. The Cortex series has several family members, and for the
M0 a high quality leakage modelling tool exists. Understanding different attack
strategies on different noise levels requires many experiments (we used well over
106 full column traces per parameter set), which becomes problematic on real
devices. Thus we opted to use simulated yet realistic traces which are quicker
to generate, modify, and analyse. This allowed us to speed up our analysis, and
therefore enable the exploration of a wider noise spectrum.

ELMO. ELMO [12] is a tool to simulate instantaneous power consumption
for the ARM Cortex M0 processor. This simulator, created by adapting the
open-source instruction set emulator Thumbulator [19], has been designed to
enable side-channel analysis without requiring a hardware measurement setup.
ELMO takes ARM thumb assembly as input, and its output describes the power
consumption, either at instruction or cycle accuracy. The resulting traces are
noise free, that is, they are based deterministically on the instructions and their
inputs.

ELMO’s quality has been established by comparing leakage detection results
between simulated and real traces from a STM32F0 Discovery Board [13]. As
raw ELMO traces are noise free, the tool is ideal to study the behaviour of
template attacks across different noise levels efficiently: both template building
and creating noisy traces are straightforward.

We stress that ELMO does capture differential data-dependent effects, such
as those caused by neighbouring instructions, as well as higher order leakage
terms. Consequently, even though ELMO traces are noise free, the trace for the
same machine line of code (same operation with the same operand) will differ
depending on the context, leading to algorithmic variance (i.e. variation in the
trace that deterministically depends on those parts of the input currently not
being targeted).

Reference implementation. We implement the innermost loop of Algorithm 1
in ARM assembly, which for convenience we wrapped in C code for initialization
and loop control. This gives us a fine control over the code ELMO simulates
the power consumption of and prevents the compiler from inserting redundant
instructions which might affect leakage. We refer to Appendix A for the full code,
which is then just repeated n times.

Figure 1a plots a partial power trace of our ARM implementation, as sim-
ulated by ELMO. After initialisation, a pattern neatly repeats, corresponding
to the equivalent of Line 5 in Algorithm 1. After excluding unimportant points
(e.g. loop structure), the most relevant instructions responsible for the pattern
are given in Table 1b.

The index i stored in r4 is used to load values from a row of A and s, whose
addresses are in r1 and r0 respectively, into r6 and r5. These are then used to

7

0 20 40 60 80 100

Time points

0.02

0.03

0.04

0.05

0.06

0.07

0.08
S

im
u

la
te

d
 p

o
w

e
r

(a) Power trace as simulated by ELMO
of our ARM implementation

Instruction Operation

ldrh r5,[r0,r4] load s[i]
ldrh r6,[r1,r4] load A[r, i]
muls r5,r6 s[i] ·A[r, i]
adds r3,r3,r5 sum + s[i] ·A[r, i]

(b) Breakdown of instructions forming the re-
peating pattern.

Fig. 1: Visual representation and detailed structure of target power traces.

perform one element multiplication, whose result overwrites r5, and finally the
accumulator is updated in r3 and eventually returned.

We wrap around negative numbers modulo q. This is in contrast to Frodo’s
original convention of taking 16-bit cut-off independently on the parameter set.
We expect the higher Hamming weights resulting from modulo-216 wraparound
to amplify leakage, thus making our decision, motivated by simplicity of analy-
sis, very conservative. Finally, intermediate multiplications and partial sums are
truncated only when exceeding 32 bits, being the M0 a 32-bit architecture.

Realistic noise estimate. As mentioned before, ELMO traces are noise free.
However, when attacking an actual ARM Cortex M0 environmental noise will
be introduced. For our experiments, we will artificially add this noise, which
we assume independently and identically distributed for all points of interest,
according to a normal distribution with mean 0 and variance σ2.

For the profiling that led to the development of ELMO [13], the observed
value4 of σ was around 4 · 10−3. We will use this realistic level of environmental
noise as benchmark throughout. Furthermore, we will consider a representative
range of σ roughly centred around this benchmark. We chose σ in the interval
[10−4, 10−2) with steps of 5 · 10−4. Compared to the variance of the signal, our
choice implies σ ranges from having essentially no impact to being on the same
order of magnitude.

3 Divide-and-Conquer Template Attack

As every entry of s is an independently and identically distributed sample from
χ, we can potentially target each position separately. Thus we first consider a
divide-and-conquer template attack. A distinct advantage of this approach is

4 Personal communication with C. Whitnall.

8

that the total number of templates is fairly small and hence we can preprocess
the profiling.

When considering the breakdown of the inner loop (Table 1b), we ignore the
loading of the public operand (it essentially leaks nothing exploitable), which
leaves three potential points of interest. On the one hand, the loading of the
secret operand and the multiplication contain direct leakage on the secret, and
all relevant inputs appear known. For the accumulator update on the other hand,
the leakage is less direct and the value of the accumulator so far cannot be taken
into account: it depends on the computation so far, violating the independence
requirement for divide-and-conquer. Thus, for the attack in this section we limit
ourselves to two points of interest, namely the loading of the secret and the Zq
multiplication.

Of course, one could still generate templates for all three points of interest
by treating the accumulator as a random variable. However, as the accumulator
value is a direct input to the accumulator update and its register is used for
the output as well, the resulting algorithmic variance would be overwhelming.
Indeed, as we will see below, already for the loading of the secret there is con-
siderable algorithmic variance related to the previous value held by the relevant
register. These limitations are intrinsic to a divide-and-conquer approach; in
Section 4 we show how an extend-and-prune approach bypasses these problems.

Profiling. One feature of LWE instances is that the overall space Zq from which
elements are drawn is fairly small as q need not be large, certainly compared
to classical primitives like ECC or RSA. For Frodo, and in general for “small
secret” schemes, the effective space that requires profiling is further reduced as
the support of χ (from which secrets are drawn) is even smaller.

For the loading of the secret, we need k templates, whereas for the mul-
tiplication k · q templates suffice. We generate these templates as part of the
preprocessing, where we are primarily interested in the signal, that is the deter-
ministic part.

Although ELMO is completely deterministic, the power trace it emulates
for a given operation still depends on preceding operations, thus introducing
algorithmic variance. To profile the loading of secret s, we use the weighted
average of k traces, corresponding to the previous value of the register involved,
as the deterministic part. For reference, depending on the parameter set, the
algorithmic variance is between 1.4 · 10−3 and 2.9 · 10−3. For the multiplication,
we assumed no algorithmic variance in our profiling and simply performed the
operation once for each template.

Estimating success rates. For each entry s[i], the distinguisher outputs a
distinguishing score vector that can be linked back to a perceived posterior dis-
tribution. Selecting the element corresponding to the highest score corresponds
to the maximum a posteriori (MAP) estimate and the probability that the cor-
rect value is returned this way is referred to as the first-order success rate.

9

Ultimately, we are more interested in the first order success rate of the full
vector s. As we assume independence for a divide-and-conquer we can easily
extrapolate the success rates for s based on those for individual positions as a full
vector is recovered correctly iff all its constituent positions are. The advantage
of using extrapolated success rates for s, rather than using direct sample means,
is that it provides us useful estimates even for very small success rates (that
would otherwise require an exorbitant number of samples). Thus, analysing the
recovery rates of single positions is extremely informative. Additionally, it gives
insights on why the extend-and-prune attack in Section 4 greatly outperforms
divide-and-conquer.

Other metrics, beyond first-order recovery rate, are of course possible to com-
pare distinguishers [18]. However, we regard those alternatives, such as oth-order
recovery or more general key ranking, only of interest when first order success
rate is low. While for divide-and-conquer this might be the case, for extend-and-
prune the first order recovery is sufficiently high to warrant concentrating on
that metric only.

Estimating position success rate. Let Pr[S] be the first order position recovery
rate where S is the event that the distinguisher indeed associates the highest
score to the actual secret value. We experimentally evaluate Pr[S] based on the
formula

Pr[S] =
∑

s∈Supp(χ)

Pr[S | s] Pr[s]

where Pr[s] corresponds to the prior distribution χ and the values for Pr[S | s]
are estimated by appropriate sample means. To ensure our traces are represen-
tative, we range over A and s (and e) for the relevant experiments and generate
traces for the full computation b← As+e. This allows us to zoom in on individ-
ual positions, highlighting where algorithmic variance occurs. While one could
also use direct, position-specific sample means for Pr[S], our approach links
more closely to the confusion matrix and has the advantage that it depends less
on the sampling distribution of s when running experiments.

Extrapolating overall success rate. If we assume independence of positions, it is
easy to express the overall success rate for recovering s. If we, temporarily, make
the simplifying assumption that Pr[S] is the same for all n positions, then the
first order recovery rate for s is Pr[S]

n
(recovery of s will be successful if and

only if recovery of each of its elements is). Even for extremely high Pr[S], this
value quickly drops, e.g. 0.99n ≈ 5.5 · 10−5 for NIST2.

Experimental results. We target each position of s individually, but only
report on the first and second one. Fig. 2 displays the success rate for all pa-
rameter sets. Each point in each curve is based on 8 · 105 experiments. The left
panel (Fig. 2a) plots the success rate for the first position, whereas the right
panel (Fig. 2b) plots it for the second position. The second position is repre-
sentative for all subsequent positions, but the first position stands out as being
significantly easier to tackle due to the lack of algorithmic variance.

10

0.002 0.004 0.006 0.008 0.01

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

S
u

c
c
e

s
s
 r

a
te

CCS1

CCS2

CCS3

CCS4

NIST1

NIST2

(a) Recovery rate for first position only.

0.002 0.004 0.006 0.008 0.01

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

S
u

c
c
e

s
s
 r

a
te

CCS1

CCS2

CCS3

CCS4

NIST1

NIST2

(b) Recovery rate for second position only.

Fig. 2: Comparison of recovery rates between first and second positions. The
dashed black line indicates our choice of realistic noise level.

The impact of algorithmic variance. The striking difference between Figs. 2a
and 2b, especially in the low environmental noise regime, is due to algorithmic
variance. As we mentioned before, algorithmic variance particularly affects the
loading of the secret, i.e. the first instruction in Table 1b, due to the previous
register value contributing to the leakage. This problem only appears from the
second position onward; for the first position, no algorithmic variance is present
as the initial state is fixed (and profiled for).

With the exception for the two small CCS parameter sets, even with virtually
no environmental noise, the success rate for the second position is far from 1.
Moreover, when environmental noise is added, the success rate initially goes up.
This phenomenon is known as stochastic resonance [14] and has been observed
for side-channels before [20]. Even for CCS1 and CCS2, that have the lowest
algorithmic variance level, the success rate for the second position is slightly
lower than for the first position.

For completeness, our assumption that the noise covariance matrix Σ for our
two points of interest is a diagonal matrix σ · I2, is suboptimal in the presence
of algorithmic variance. Using a diagonal matrix Σ that incorporates the algo-
rithmic variance would improve the distinguisher while reducing the stochastic
resonance. As the extend-and-prune approach from the next section is far more
convincing, we refrain from a full analysis.

Full vector recovery. The success rates for full vector are more relevant to com-
pare either amongst parameter sets or with other attacks, be it lattice or other
side-channel attacks. As a simplification, we assume that the recovery rate for
the second position (Fig. 2b) is representative for all positions: we checked this
assumption holds for all bar the first position, whose contribution is limited
anyway given concrete values of n (the total number of positions).

11

To ease comparison, for each parameter set we determined the σ for which the
divide-and-conquer attack approximately achieves a success rate for recovering s
of around 2−128 (corresponding to 128-bit security). For the smallest parameter
sets, CCS1 and CCS2, all the σ in our range are susceptible (i.e. lead to success
rates of at least 2−128), whereas for the NIST parameter sets, none of the σ
appear insecure. For the original large sets CCS3 and CCS4, any σ below 7·10−3,
which includes our realistic benchmark, leads to a loss of security below the 128-
bit level.

As a caveat, a further reduction in residual bit security will be possible by
explicitly incorporating algorithmic variance in the templates and by considering
key ranking, or possibly even novel lattice reduction algorithms that take into ac-
count side-channel information. However, we anticipate none of these approaches
will allow straightforward and almost instant key recovery for all parameter sets
for realistic levels of noise (as introduced by σ).

4 Extend-and-Prune Template Attack

For the divide-and-conquer approach from the previous section, we assumed that
the positions of s are independent of each other. While this assumption is valid
for the generation of s, it turned out that for the leakage, it is not. However,
Algorithm 1 deals with the elements of s sequentially, from position 1 to position
n, which we will exploit by a well-known extend-and-prune approach.

In our case, the extend-and-prune algorithm operates as follows. We imagine
a k-ary tree of depth n where the nodes at level i in the tree correspond to
a partial guess s[1], . . . , s[i − 1] for the secret; for a given node at level i, its k
out-going edges are labelled by the k possible values that s[i] can take. This way,
each path from the root to one of the kn possible leaves uniquely corresponds
to one of the possible values that the secret vector s can take. A distinguisher
can sequentially calculate a score for a vector s by traversing the tree from the
root to the leaf representing s where for each edge it encounters it cumulatively
updates s’s score.

The challenge of an extend-and-prune algorithm is to efficiently traverse a
small part of the tree while still ending up with a good overall score. The standard
way of doing so is to first calculate the score for all nodes at level 2. For each
level-2 node, the score will be that of the edge from the root to that node. Thus
the trivial level-1 guess is extended to all possible level-2 guesses. The next stage
is to prune all these guesses to a more reasonable number. For all the remaining
level-2 guesses, one then extends to all possible level-3 guesses, and then again
these guesses are pruned down. This process repeats until reaching the final level
(n+ 1), where the complete s is guessed.

The advantage of this approach is that, when calculating a score for s[i],
the distinguisher already has a guess for s[1], . . . , s[i − 1], which allows it to
create templates based on this guess. Our distinguisher will only use the previous
secret s[i − 1] and the value of the accumulator so far (an inner product of
(s[1], . . . , s[i− 1]) with the relevant part of A) to create a template. As the total

12

0.002 0.004 0.006 0.008 0.01

0

0.2

0.4

0.6

0.8

1

S
u

c
c
e

s
s
 r

a
te

CCS1

CCS2

CCS3

CCS4

NIST1

NIST2

(a) Column recovery rate of divide-and-
conquer template attack.

0.002 0.004 0.006 0.008 0.01

0

0.2

0.4

0.6

0.8

1

S
u
c
c
e
s
s
 r

a
te

CCS1

CCS2

CCS3

CCS4

NIST1

NIST2

(b) Column recovery rate of extend-and-
prune template attack.

Fig. 3: Comparison between column recovery of our two template attacks.

number of possible templates becomes rather unwieldy (around k2 · q · 232), the
profiling is interleaved with the tree traversal and pruning is used to keep the
number of templates manageable.

The success of an extend-and-prune attack depends on the pruning strategy,
specifically how many candidates to keep at each step. To the best of our knowl-
edge, there is no comprehensive study comparing different pruning strategies
in different scenarios. When Chari et al. [6] introduced template attacks to the
cryptanalyst’s arsenal, they suggested a pruning strategy that depends on the
scores themselves. We instead fix the same number of candidates to keep at each
step, which is a classical approach known as beam search. The size of the beam,
that is the number of candidates to keep after pruning, is denoted by b.

Greedy pruning using a laser beam (b = 1). We start by considering
the greediest pruning strategy by restricting the beam size to b = 1, meaning
that after each step we only keep a single candidate for the secret recovered so
far. This “knowledge”, provided it is correct, has two very immediate effects.
Firstly, the algorithmic variance we observed in the loading of the secret can be
reduced as we assume we typically know the previous secret held by the relevant
register. Secondly, by recovering s from first to last we can predict the value
of the accumulator, which brings into play a third point of interest, namely
the update of the accumulator (the last point in Table 1b), as here too the
algorithmic variance disappears.

Fig. 3 presents the vector recovery rates of both last section’s divide-and-
conquer attack (in the left panel, Fig. 3a), and of extend-and-prune using b = 1
(Fig. 3b). Note that the former is extrapolated based on position recovery rates,
whereas the latter has been estimated directly, based on 2 · 103 experiments per
setting.

13

The difference between Figures 3a and 3b is striking. For the extend-and-
prune approach we almost completely removed algorithmic variance and, when
virtually no environmental noise is present either (σ ≈ 10−4), this resulted in
a vector recovery rate of essentially 1. However, when considering the realistic
noise level as indicated by the dashed vertical line, not all parameter sets are
as affected and especially for NIST1 there might be still some hope (for the
other parameters, recovery rates exceed 5% which translates to less than 5 bits
of security, so badly broken).

Increasing the beam size (b > 1). So far we only considered b = 1. Increasing
the beam size b will result in a slower key recovery (linear slowdown in b) but
should yield higher recovery rates. For b = 1 we mentioned two advantages
of extend-and-prune, namely reduced algorithmic variance and an additional
point of interest. For b > 1 a third advantage appears, namely the ability for
the distinguisher to self-correct. This self-correcting behaviour has also been
observed (for the first position) by Aysu et al. [2], who essentially used a beam
size b > 1 for the first position and then revert to b = 1 for all remaining ones.

Name bmin
b

2 3 4 5 6 7 8 9 10

CCS1 30709 0 0 0 0 0 0 0 0 0
CCS2 27 0.1 0.13 0.36 0.53 0.68 0.76 0.85 0.90 0.94
CCS3 12 0 0.48 0.77 0.90 0.94 0.96 0.99 0.99 0.99
CCS4 11 0.03 0.63 0.91 0.97 0.97 0.98 0.98 0.99 0.99
NIST1 63 0 0 0.01 0.03 0.13 0.24 0.33 0.41 0.50
NIST2 11 0 0.07 0.63 0.84 0.96 0.99 0.99 0.99 0.99

Table 2: Minimum values of b to achieve column recovery rate equal to 1, and
heuristic column recovery when b is fixed to the listed values.

To assess the effect of the beam size b, we ran two types of experiments.
Firstly, for each parameter set and noise level σ = 0.0096, we ran around 103

experiments and looked at the smallest beam b for which all experiments ended
with the actual secret s part of the final beam (allowing an adversary to identify s
by a subsequent enumeration of all final beam candidates). The resulting values
are reported in the bmin column of Table 2. With the exception of CCS1, we
notice that bmin is at most 26, so again only a few bits of security remain. As
bmin will invariably grow as the number of experiments does, until eventually it
is as large as the key space, for our second set of experiment, we estimated final
vector recovery rate as a function of the beam size, for b ≤ 10. The results are
again reported in Table 2 and are fairly damning: even for NIST1 a recovery
rate of around 50% is achieved.

14

352 592 640 752 864 976

Number of traces (n)

7

9

11

13

21

23

N
u
m

b
e
r

o
f
c
a
n
d
id

a
te

s
 (

k
) CCS1

CCS2

CCS3

CCS4

NIST1

NIST2

Fig. 4: Visual representation of all parameter sets. For each of them, the x axis
lists n, and the y axis lists k. The number of concentric circles around each
parameter set encodes how successful our attack is against it.

5 Learning the Lesson: How to Thwart Extend-and-Prune

Choosing your parameters. So far, we have compared increasingly effective
attack strategies, where we compared different parameter sets purely by name,
so without further reference to their actual parameters. We now investigate the
effect of these parameters on the efficacy and efficiency of the attack. Specifically,
we consider the effects of n and k on the natural side-channel vulnerability of the
resulting matrix–vector multiplication. We completely ignore the effect on the
security of the LWE instance and indeed, leave the combination of side-channel
information with lattice reduction methods a tantalizing open problem.

Figure 4 provides a scatter plot of (n, k) for the various parameter sets sug-
gested [5,15]. Furthermore, we encoded the success rate of our extend-and-prune
attack with beam b = 1 (Section 4) and realistic noise level (dashed line in
Figure 3b) with concentric circles around each parameter set. The number of
circles is simply the ceil of said success rate times ten, and is helpful in visually
quantifying the outcome we achieved in each setting.

The effect that the choice (n, k) has on the hardness of the LWE instance has
been well studied [1], but from a side-channel perspective, new meaning emerges:
n corresponds both to the number of (sub)traces an adversary obtains on each
component of s and to the number of positions to retrieve, whereas k quantifies
the keyspace size for individual positions.

Although the divide-and-conquer attack suffers badly when more positions
need to be recovered, the extend-and-prune approach is far more robust in this
respect. For instance, the main difference between CCS1 and CCS2 is that the
latter has a twice as big n, thus providing a much easier target for our at-
tack. Thus increasing n overwhelmingly has the effect of making life easier for
an adversary as more leakage will be available. In other words, while increas-
ing the dimension n makes the LWE instance harder, it makes the underlying

15

matrix–vector multiplication easier to attack in our side-channel scenario. This
conclusion does rely on square A, so n = m. In case A is a non-square matrix,
then m refers to the number of traces and n to the number of positions to re-
cover. The hardness of LWE appears is mainly governed by n, where increasing
n makes both the LWE instance harder and it complicates side-channel crypt-
analysis. Similarly, both for LWE and for the side-channel analysis, increasing
m makes attacks potentially easier, with the effect for side-channels much, much
more pronounced.

The qualitative effect of increasing k is fairly straightforward: a large keyspace
means that there are more options to choose from, with corresponding signals
that are closer together, making distinguishing harder. This effect is illustrated
by comparing the two parameter sets NIST1 and CCS2. These two sets have
roughly equal n, but NIST1’s k is about thrice that of CCS2: our attacks confirm
that CCS2 is a lot easier to attack than NIST1.

Effect of modifying NIST1. We conducted a final experiment to gain more in-
sights on parameter set selection. We focused our attention on the two NIST
parameter sets: they have roughly the same k (it differs by only two) but NIST1
has less than two thirds less traces than NIST2. We therefore increased n in
NIST1 to match NIST2’s (n = 976) and analysed the extend-and-prune attack
in two settings: when b = 1 and σ is our realistic value, and when b = 10 and
σ = 0.0096, i.e. the worst noise level we consider. In the former case the suc-
cess rate increased from 0.01 to 0.11, almost equating the success rate of 0.12
observed in the NIST2 setting. In the b = 10 case, the success rate reported in
Table 2 (0.50) skyrocketed to 0.94, again very close to NIST2’s. This strongly in-
dicates how having larger matrices, hence more traces per secret element, goes in
favour of the adversary. Therefore in general being overpessimistic in the choice
of n might prove fatal if side-channel attacks are a concern.

A simple countermeasure. Aysu et al. [2] briefly discuss potential coun-
termeasures, including shuffling, based on the observation that randomness is
usually introduced to mitigate DPA attacks. However, randomness for counter-
measures can be expensive, so we present a much simpler deterministic counter-
measure that has the effect of re-introducing algorithmic variance in the system
even when attempting an extend-and-prune attack.

In order to reduce algorithmic variance, our extend-and-prune attack relies
on the sequential manner in which the textbook As multiplication processes
s: for each inner product of a row of A with s, the elements of the latter are
accessed in the same order. However, there is no reason to do so, and we suggest
to calculate the rth inner product starting at position r instead. This corresponds
to changing Line 5 of Algorithm 1 to

sum← sum+ A[r, (i+ r − 1) mod n] · s[(i+ r − 1) mod n] .

The consequence is that there is no longer a clear ordering of s’s elements for an
extend-and-prune attack to exploit and, without novel ideas, the attack’s success
degrades to that of the earlier divide-and-conquer one (Section 3).

16

A natural alternative to frustrate extend-and-prune is to mask the accumula-
tor by setting it to some random value at the beginning, that is only subtracted
at the very end. While this alternative would make exploiting the accumula-
tor update hard (as for divide-and-conquer), on its own it would still allow an
extend-and-prune attack to reduce algorithmic variance in the loading of the
secrets. Thus our first suggestion is preferable.

Acknowledgements

The research leading to these results has received funding from
the European Union’s Horizon 2020 research and innovation pro-
gramme Marie Sk lodowska-Curie ITN ECRYPT-NET (Project Refer-
ence 643161) and Horizon 2020 project PQCRYPTO (Project Refer-
ence 645622). Furthermore, Elisabeth Oswald was partially funded by
H2020 grant SEAL (Project Reference 725042). We thank the authors
of ELMO for their kind help, comments and feedback.

References

1. M. R. Albrecht, R. Player, and S. Scott. On the concrete hardness of learning with
errors. J. Mathematical Cryptology, 9(3):169–203, 2015.

2. A. Aysu, Y. Tobah, M. Tiwari, A. Gerstlauer, and M. Orshansky. Horizontal side-
channel vulnerabilities of post-quantum key exchange protocols. In to appear in
IEEE International Symposium on Hardware Oriented Security and Trust, HOST
2018, 2018.

3. L. Batina, L. Chmielewski, L. Papachristodoulou, P. Schwabe, and M. Tunstall.
Online template attacks. In INDOCRYPT 2014, pages 21–36, 2014.

4. A. Biryukov, D. Dinu, and J. Großschädl. Correlation power analysis of lightweight
block ciphers: From theory to practice. In M. Manulis, A.-R. Sadeghi, and
S. Schneider, editors, ACNS 16, volume 9696 of LNCS, pages 537–557. Springer,
Heidelberg, June 2016.

5. J. W. Bos, C. Costello, L. Ducas, I. Mironov, M. Naehrig, V. Nikolaenko, A. Raghu-
nathan, and D. Stebila. Frodo: Take off the ring! Practical, quantum-secure key
exchange from LWE. In E. R. Weippl, S. Katzenbeisser, C. Kruegel, A. C. Myers,
and S. Halevi, editors, ACM CCS 16, pages 1006–1018. ACM Press, Oct. 2016.

6. S. Chari, J. R. Rao, and P. Rohatgi. Template attacks. In B. S. Kaliski Jr., Çetin
Kaya. Koç, and C. Paar, editors, CHES 2002, volume 2523 of LNCS, pages 13–28.
Springer, Heidelberg, Aug. 2003.

7. M. H. Devoret and R. J. Schoelkopf. Superconducting circuits for quantum infor-
mation: an outlook. Science, 339(6124):1169–1174, 2013.

8. J. Kelly, R. Barends, A. G. Fowler, A. Megrant, E. Jeffrey, T. C. White, D. Sank,
J. Y. Mutus, B. Campbell, Y. Chen, Z. Chen, B. Chiaro, A. Dunsworth, I.-C. Hoi,
C. Neill, P. J. J. O/’Malley, C. Quintana, P. Roushan, A. Vainsencher, J. Wenner,
A. N. Cleland, and J. M. Martinis. State preservation by repetitive error detection
in a superconducting quantum circuit. Nature, 519:66–69, 2015.

9. A. Langlois and D. Stehlé. Worst-case to average-case reductions for module lat-
tices. Designs, Codes and Cryptography, 75(3):565–599, 2015.

17

10. K. Lemke, K. Schramm, and C. Paar. DPA on n-bit sized Boolean and arithmetic
operations and its application to IDEA, RC6, and the HMAC-construction. In
M. Joye and J.-J. Quisquater, editors, CHES 2004, volume 3156 of LNCS, pages
205–219. Springer, Heidelberg, Aug. 2004.

11. V. Lyubashevsky, C. Peikert, and O. Regev. On ideal lattices and learning with
errors over rings. In H. Gilbert, editor, EUROCRYPT 2010, volume 6110 of LNCS,
pages 1–23. Springer, Heidelberg, May 2010.

12. D. McCann, E. Oswald, and C. Whitnall. Implementation of ELMO. https:

//github.com/bristol-sca/ELMO. Accessed: 27-11-2017.
13. D. McCann, E. Oswald, and C. Whitnall. Towards practical tools for side channel

aware software engineering: ’grey box’ modelling for instruction leakages. In 26th
USENIX Security Symposium, USENIX Security 2017, Vancouver, BC, Canada,
August 16-18, 2017., pages 199–216, 2017.

14. M. D. McDonnell, N. G. Stocks, C. E. M. Pearce, and D. Abbott. Stochastic Res-
onance – From Suprathreshold Stochastic Resonance to Stochastic Signal Quanti-
zation. Cambridge University Press, 2008.

15. M. Naehrig, E. Alkim, J. Bos, L. Ducas, K. Easterbrook, B. LaMacchia,
P. Longa, I. Mironov, V. Nikolaenko, C. Peikert, A. Raghunathan, and D. Stebila.
FrodoKEM. Technical report, National Institute of Standards and Technology,
2017. available at https://frodokem.org/.

16. National Institute of Standards and Technology. Post-quantum cryptography stan-
dardization. https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/

Post-Quantum-Cryptography-Standardization.
17. O. Regev. On lattices, learning with errors, random linear codes, and cryptography.

In H. N. Gabow and R. Fagin, editors, 37th ACM STOC, pages 84–93. ACM Press,
May 2005.

18. F.-X. Standaert, T. Malkin, and M. Yung. A unified framework for the analysis of
side-channel key recovery attacks. In A. Joux, editor, EUROCRYPT 2009, volume
5479 of LNCS, pages 443–461. Springer, Heidelberg, Apr. 2009.

19. D. Welch. Thumbulator. https://github.com/dwelch67/thumbulator.git/.
20. C. Whitnall and E. Oswald. A comprehensive evaluation of mutual information

analysis using a fair evaluation framework. In P. Rogaway, editor, CRYPTO 2011,
volume 6841 of LNCS, pages 316–334. Springer, Heidelberg, Aug. 2011.

18

https://github.com/bristol-sca/ELMO
https://github.com/bristol-sca/ELMO
https://frodokem.org/
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization
https://github.com/dwelch67/thumbulator.git/

A ARM assembly code for inner product

Assembly
.syntax unified

.text

.thumb

.global Vec_Mult

.func Vec_Mult

Vec_Mult:

push {r1-r7}

@Load and prepare the data

@ i->0

movs r4, #0

@ number limit->address limit

lsls r2, #1

loop:

@Load first[i]

ldrh r5,[r0,r4]

@Load second[i]

ldrh r6,[r1,r4]

@Multiply

muls r5,r6

@Add

adds r3,r3,r5

@Update i as address

adds r4,r4,#2

@Compare with limit

cmp r4,r2

bne loop

@Return Value

mov r0,r3

pop {r1-r7}

bx lr

.endfunc

19

	Assessing the Feasibility of Single Trace Power Analysis of Frodo

