57 research outputs found

    Emotional, social, and behavioral factors affecting wellbeing and academic performance in university students with chronic diseases: Proposed longitudinal study

    Get PDF
    Background: Chronic diseases (CDs) affect about half (45%) of individuals in the U.S., and this population is expected to grow. Despite the high prevalence and psychosocial burden of CDs, less is known about the effects of CDs on university students’ academic performance and psychosocial wellbeing. Research on how CDs might affect pursuit of valued activities (e.g., higher education), psychosocial wellbeing, and internalized stigma is lacking in university students with CDs. Aims: The first aim is to characterize the effects of chronic diseases on academic performance and psychosocial wellbeing in university students. The second aim is to examine the academic performance, psychosocial, and health behavior effects of internalized stigma in students with CDs. Method: A “panel survey” design (Duncan & Kalton, 1987) was chosen to longitudinally assess university students. Two hundred students will be assessed three times at three-month intervals (i.e., once per academic quarter). Since statistical analysis of repeated measures will also involve a between-subjects factor (CD and non-CD students), a mixed design ANOVA will be utilized to assess longitudinal change: Analyses will include the between-subjects factor and two within-subjects repeated measures (time x outcome measure) for each outcome. Anticipated Implications: The increased risk of negative psychosocial and academic outcomes in chronically-diseased students will set the stage for larger investigations that can impact university programming for student support

    Five approaches to producing actionable science in conservation

    Full text link
    peer reviewedThe knowledge produced by conservation scientists must be actionable in order to address urgent conservation challenges. To understand the process of creating actionable science, we interviewed 71 conservation scientists who had participated in 1 of 3 fellowship programs focused on training scientists to become agents of change. Using a grounded theory approach, we identified 16 activities that these researchers employed to make their scientific products more actionable. Some activities were more common than others and, arguably, more foundational. We organized these activities into 3 nested categories (motivations, strategies, and tactics). Using a co-occurrence matrix, we found that most activities were positively correlated. These correlations allowed us to identify 5 approaches, framed as profiles, to actionable science: the discloser, focused on open access; the educator, focused on science communication; the networker, focused on user needs and building relationships; the collaborator, focused on boundary spanning; and the pluralist, focused on knowledge coproduction resulting in valuable outcomes for all parties. These profiles build on one another in a hierarchy determined by their complexity and level of engagement, their potential to support actionable science, and their proximity to ideal coproduction with knowledge users. Our results provide clear guidance for conservation scientists to generate actionable science to address the global biodiversity conservation challenge.Cinco estrategias para producir ciencia práctica en la conservación Resumen El conocimiento producido por los científicos de la conservación debe ser práctico para poder abordar los obstáculos urgentes que enfrenta la conservación. Entrevistamos a 71 científicos de la conservación que participaron en uno de los tres programas de becas enfocados en la formación de científicos como agentes de cambio para entender el proceso de creación de la ciencia práctica. Usamos una estrategia de teoría fundamentada para identificar 16 actividades empleadas por estos investigadores para hacer más prácticos sus productos científicos. Algunas actividades fueron más comunes que otras y, probablemente, más fundamentales. Organizamos estas actividades en tres categorías anidadas: motivaciones, estrategias y tácticas. Con una matriz de co-ocurrencia, encontramos que la mayoría de las actividades estaban correlacionadas positivamente. Estas correlaciones nos permitieron identificar cinco estrategias, encuadradas como perfiles, para la ciencia práctica: la reveladora, enfocada en el acceso abierto; la educativa, enfocada en la comunicación de la ciencia; la interconectora, enfocada en las necesidades del usuario y en construir relaciones; la colaborativa, enfocada en la expansión de las fronteras; y la pluralista, enfocada en la coproducción del conocimiento como el origen de resultados valiosos para todas las partes. Estas estrategias se apoyan entre sí en una jerarquía determinada por su complejidad y el nivel de compromiso, su potencial para apoyar la ciencia práctica y su proximidad a la coproducción ideal con los usuarios del conocimiento. Nuestros resultados proporcionan directrices claras para que los científicos de la conservación generen ciencia práctica para abordar los retos de conservación que enfrenta la biodiversidad mundial.保护科学家必须产出可操作的知识, 才能应对紧迫的保护挑战。为了解创造可操作科学的过程, 我们采访了71位保护科学家, 他们参与了培养科学家成为变革者的三项奖金项目中的一项。基于扎根理论方法, 我们确定了这些研究者为创造可操作的科学产出而开展的16项活动。有些活动比其他活动更为常见, 并且可以说是更为基础。我们将这些活动分为三个嵌套的类别(动机、策略和战术)。利用共生矩阵, 我们发现大多数活动是正相关的, 且基于这些相关性可以确定出五种方法, 作为可操作科学的框架:专注于开放存取的公开者;专注于科学交流的教育者;专注于使用者需求和建立关系的网络者;专注于跨越边界的合作者;以及专注于知识协同生产、为各方带来有价值结果的多元主义者。这些特征相互建立在一个层级结构上, 而这个层级结构由其复杂性和参与度、支持可操作科学的潜力, 以及与知识使用者理想的协同生产的接近度决定。本研究的结果为保护科学家产出可操作科学以应对全球生物多样性保护挑战提供了明确的指导。 【胡怡思; 审校: 聂永刚】

    Is There Such a Thing as an Antiwar Film?

    Get PDF
    This article examines the different strategies film-makers from around the world have used in attempts to make antiwar films and evaluates their effectiveness

    The Science Performance of JWST as Characterized in Commissioning

    Full text link
    This paper characterizes the actual science performance of the James Webb Space Telescope (JWST), as determined from the six month commissioning period. We summarize the performance of the spacecraft, telescope, science instruments, and ground system, with an emphasis on differences from pre-launch expectations. Commissioning has made clear that JWST is fully capable of achieving the discoveries for which it was built. Moreover, almost across the board, the science performance of JWST is better than expected; in most cases, JWST will go deeper faster than expected. The telescope and instrument suite have demonstrated the sensitivity, stability, image quality, and spectral range that are necessary to transform our understanding of the cosmos through observations spanning from near-earth asteroids to the most distant galaxies.Comment: 5th version as accepted to PASP; 31 pages, 18 figures; https://iopscience.iop.org/article/10.1088/1538-3873/acb29

    The James Webb Space Telescope Mission

    Full text link
    Twenty-six years ago a small committee report, building on earlier studies, expounded a compelling and poetic vision for the future of astronomy, calling for an infrared-optimized space telescope with an aperture of at least 4m4m. With the support of their governments in the US, Europe, and Canada, 20,000 people realized that vision as the 6.5m6.5m James Webb Space Telescope. A generation of astronomers will celebrate their accomplishments for the life of the mission, potentially as long as 20 years, and beyond. This report and the scientific discoveries that follow are extended thank-you notes to the 20,000 team members. The telescope is working perfectly, with much better image quality than expected. In this and accompanying papers, we give a brief history, describe the observatory, outline its objectives and current observing program, and discuss the inventions and people who made it possible. We cite detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space Telescope Overview, 29 pages, 4 figure

    Five approaches to producing actionable science in conservation.

    Full text link
    peer reviewedThe knowledge produced by conservation scientists must be actionable in order to address urgent conservation challenges. To understand the process of creating actionable science, we interviewed 71 conservation scientists who had participated in 1 of 3 fellowship programs focused on training scientists to become agents of change. Using a grounded theory approach, we identified 16 activities that these researchers employed to make their scientific products more actionable. Some activities were more common than others and, arguably, more foundational. We organized these activities into 3 nested categories (motivations, strategies, and tactics). Using a co-occurrence matrix, we found that most activities were positively correlated. These correlations allowed us to identify 5 approaches, framed as profiles, to actionable science: the discloser, focused on open access; the educator, focused on science communication; the networker, focused on user needs and building relationships; the collaborator, focused on boundary spanning; and the pluralist, focused on knowledge coproduction resulting in valuable outcomes for all parties. These profiles build on one another in a hierarchy determined by their complexity and level of engagement, their potential to support actionable science, and their proximity to ideal coproduction with knowledge users. Our results provide clear guidance for conservation scientists to generate actionable science to address the global biodiversity conservation challenge.Cinco estrategias para producir ciencia práctica en la conservación Resumen El conocimiento producido por los científicos de la conservación debe ser práctico para poder abordar los obstáculos urgentes que enfrenta la conservación. Entrevistamos a 71 científicos de la conservación que participaron en uno de los tres programas de becas enfocados en la formación de científicos como agentes de cambio para entender el proceso de creación de la ciencia práctica. Usamos una estrategia de teoría fundamentada para identificar 16 actividades empleadas por estos investigadores para hacer más prácticos sus productos científicos. Algunas actividades fueron más comunes que otras y, probablemente, más fundamentales. Organizamos estas actividades en tres categorías anidadas: motivaciones, estrategias y tácticas. Con una matriz de co-ocurrencia, encontramos que la mayoría de las actividades estaban correlacionadas positivamente. Estas correlaciones nos permitieron identificar cinco estrategias, encuadradas como perfiles, para la ciencia práctica: la reveladora, enfocada en el acceso abierto; la educativa, enfocada en la comunicación de la ciencia; la interconectora, enfocada en las necesidades del usuario y en construir relaciones; la colaborativa, enfocada en la expansión de las fronteras; y la pluralista, enfocada en la coproducción del conocimiento como el origen de resultados valiosos para todas las partes. Estas estrategias se apoyan entre sí en una jerarquía determinada por su complejidad y el nivel de compromiso, su potencial para apoyar la ciencia práctica y su proximidad a la coproducción ideal con los usuarios del conocimiento. Nuestros resultados proporcionan directrices claras para que los científicos de la conservación generen ciencia práctica para abordar los retos de conservación que enfrenta la biodiversidad mundial.保护科学家必须产出可操作的知识, 才能应对紧迫的保护挑战。为了解创造可操作科学的过程, 我们采访了71位保护科学家, 他们参与了培养科学家成为变革者的三项奖金项目中的一项。基于扎根理论方法, 我们确定了这些研究者为创造可操作的科学产出而开展的16项活动。有些活动比其他活动更为常见, 并且可以说是更为基础。我们将这些活动分为三个嵌套的类别(动机、策略和战术)。利用共生矩阵, 我们发现大多数活动是正相关的, 且基于这些相关性可以确定出五种方法, 作为可操作科学的框架:专注于开放存取的公开者;专注于科学交流的教育者;专注于使用者需求和建立关系的网络者;专注于跨越边界的合作者;以及专注于知识协同生产、为各方带来有价值结果的多元主义者。这些特征相互建立在一个层级结构上, 而这个层级结构由其复杂性和参与度、支持可操作科学的潜力, 以及与知识使用者理想的协同生产的接近度决定。本研究的结果为保护科学家产出可操作科学以应对全球生物多样性保护挑战提供了明确的指导。 【胡怡思; 审校: 聂永刚】

    Luna Connect Lunar Concret Mixer a Rasc-Al 2024 & Capstone Project

    No full text
    With a renewed interest in lunar exploration and the launch of NASA’s Artemis 1 in November 2022, as well as planned future work on the Moon’s surface in subsequent Artemis missions, the need for lunar habitats is becoming more pertinent. Proposals involving modules sent up by rockets to lunar orbit have been mentioned, however, a more sustainable solution might involve utilizing lunar regolith to create a concrete-like building material. Luna Connect aims to create a mixer for producing a lunar concrete, mostly using other materials that can be found on the Moon or produced by astronauts, such as potato starch and water. This design has the possibility to be scaled up, made space-ready, and deployed onto the lunar surface, creating a material that requires less cost and waste than other solutions. This alternative is especially attractive compared to solutions relying heavily on materials produced Earth-side and transported to the lunar surface, reducing both emissions and cost-per-mix. Luna Connect has envisioned and is building a prototype, as well as testing various ingredient ratios to determine the best workability. The team hopes this knowledge will help inform any further iterations and has developed a mission architecture for deployment on the moon
    corecore