751 research outputs found

    Component test program for variable-cycle engines

    Get PDF
    Variable cycle engine (VCE) concepts for a supersonic cruise aircraft were studied. These VCE concepts incorporate unique critical components and flow path arrangements that provide good performance at both supersonic and subsonic cruise and appear to be economically and environmentally viable. Certain technologies were identified as critical to the successful development of these engine concepts and require considerable development and testing. The feasibility and readiness of the most critical VCE technologies, was assessed, a VCE component test program was initiated. The variable stream control engine (VSCE) component test program, tested and evaluated an efficient low emission duct burner and a quiet coannular ejector nozzle at the rear of a rematched F100 engine

    NASA research in supersonic propulsion: A decade of progress

    Get PDF
    A second generation, economically viable, and environmentally acceptable supersonic aircraft is reviewed. Engine selection, testbed experiments, and noise reduction research are described

    Improved Survival After Percutaneous Coronary Intervention of Chronic Total Occlusion Varies by Target Vessel

    Get PDF

    The effect of spatial and temporal accumulation rate variability in west Antarctica on soluble ion deposition

    Get PDF
    Annually‐dated snowpit and ice core records from two areas of West Antarctica are used to investigate spatial accumulation patterns and to evaluate temporal accumulation rate/glaciochemical concentration and flux relationships. Mean accumulation rate gradients in Marie Byrd Land (11–23 gcm−2yr−1 over 150 km, decreasing to the south) and Siple Dome (10–18 gcm−2yr−1 over 60 km, decreasing to the south) are consistent for at least the last several decades, and demonstrate the influence of the offshore quasi‐permanent Amundsen Sea low pressure system on moisture flux into the region. Local and regional‐scale topography in both regions appears to affect orographic lifting, air mass trajectories, and accumulation distribution. Linear regression of mean annual soluble ion concentration and flux data vs. accumulation rates in both regions indicates that 1) concentrations are independent of and thus not a rescaling of accumulation rate time‐series, and 2) chemical flux to the ice sheet surface is mainly via wet deposition, and changes in atmospheric concentration play a significant role. We therefore suggest that, in the absence of detailed air/snow transfer models, ice core chemical concentration and not flux time‐series provide a better estimate of past aerosol loading in West Antarctica

    Scaling in many-body systems and proton structure function

    Get PDF
    The observation of scaling in processes in which a weakly interacting probe delivers large momentum q{\bf q} to a many-body system simply reflects the dominance of incoherent scattering off target constituents. While a suitably defined scaling function may provide rich information on the internal dynamics of the target, in general its extraction from the measured cross section requires careful consideration of the nature of the interaction driving the scattering process. The analysis of deep inelastic electron-proton scattering in the target rest frame within standard many-body theory naturally leads to the emergence of a scaling function that, unlike the commonly used structure functions F1F_1 and F2F_2, can be directly identified with the intrinsic proton response.Comment: 11 pages, 4 figures. Proceedings of the 11th Conference on Recent Progress in Many-Body Theories, Manchester, UK, July 9-13 200

    A 110,000‐year history of change in continental biogenic emissions and related atmospheric circulation inferred from the Greenland Ice Sheet Project Ice Core

    Get PDF
    The 110,000‐year record of ammonium concentrations from the Greenland Ice Sheet Project 2 (GISP2) ice core provides the basis for an analysis of terrestrial biological production and atmospheric circulation patterns involved in the transport of biologically produced ammonium to the Greenland atmosphere. The directly measured concentration series was selected for analysis, rather than that of estimated ammonium flux, after a detailed analysis of the relationship among ice core glaciochemical concentrations and a high‐resolution simultaneous record of snow accumulation from the GISP2 core. Analysis of the ammonium concentration series shows that maxima in background levels of ammonium in the Greenland atmosphere are strongly related to and synchronous with summer forcing associated with the precessional cycle of insolation. Minima in background levels, on the other hand, are delayed relative to minima in summer insolation at those times when ice volume is significant. The duration of these delays are similar in magnitude (≈6000 years) to other paleoclimatic responses to changes in ice volume. Decadal and centennial scale variation about background levels of ammonium concentration exhibit two modes of behavior when compared to a record of polar atmospheric circulation intensity. During warmer periods ammonium transport to Greenland is similar to present patterns. Under coldest conditions the low levels of ammonium transported to Greenland are the result of extreme southerly excursions of the predominantly zonal polar circulation. The rapid transitions (≈200 years) between these two climatic conditions appear to be associated with a critical volume or extent of the continental ice sheets

    Sea level pressure variability in the Amundsen Sea region inferred from a West Antarctic glaciochemical record

    Get PDF
    Using European Center for Medium‐Range Weather Forecasts (ECMWF) numerical operational analyses, sea ice extent records, and station pressure data, we investigate the influence of sea level pressure variability in the Amundsen Sea region on a West Antarctic (Siple Dome) glaciochemical record. Empirical orthogonal function analysis of the high‐resolution Siple Dome multivariate ice core chemical time series record (SDEOF1) documents lower tropospheric transport of sea‐salt aerosols to the site. During 1985–1994 the SDEOF1 record of high (low) aerosol transport corresponds to anomalously low (high) sea level pressure (SLP) in the Amundsen Sea region. Spatial correlation patterns between ECMWF monthly SLP fields and the annual SDEOF1 record suggest that a majority of sea‐salt aerosol is transported to Siple Dome during spring (September, October, and November). Analysis of zonal and meridional wind fields supports the SLP/SDEOF1 correlation and suggests the SDEOF1 record is sensitive to changes in regional circulation strength. No relationship is found between sea ice extent and the SDEOF1 record for the period 1973–1994. To investigate the SDEOF1 record prior to ECMWF coverage, a spring transpolar index (STPI) is created, using normalized SLP records from the New Zealand and South America/Antarctic Peninsula sectors, and is significantly correlated (at least 95% c.l.) with the SDEOF1 record on an annual (r = 0.32, p \u3c 0.001) and interannual (3 years; r = 0.51, p \u3c 0.001) basis. Dominant periodicities (3.3 and 7.1 years) in the annual SDEOF1 record (1890–1994 A.D.) suggest that a portion of the recorded interannual variability may be related tropical/extratropical ENSO teleconnections. Changes in the periodic structure of the full (850–1994 A.D.) Siple Dome record suggests a shift in SLP forcing during the Little Ice Age (∼1400–1900 A.D.) interval

    Potential atmospheric impact of the Toba Mega‐Eruption ∼71,000 years ago

    Get PDF
    An ∼6‐year long period of volcanic sulfate recorded in the GISP2 ice core about 71,100 ± 5000 years ago may provide detailed information on the atmospheric and climatic impact of the Toba mega‐eruption. Deposition of these aerosols occur at the beginning of an ∼1000‐year long stadial event, but not immediately before the longer glacial period beginning ∼67,500 years ago. Total stratospheric loading estimates over this ∼6‐year period range from 2200 to 4400 Mt of H2SO4 aerosols. The range in values is given to compensate for uncertainties in aerosol transport. Magnitude and longevity of the atmospheric loading may have led directly to enhanced cooling during the initial two centuries of this ∼1000‐year cooling event

    The polar expression of ENSO and sea-ice variability as recorded in a South Pole ice core

    Get PDF
    An annually dated ice core recovered from South Pole (2850 m a.s.l.) in 1995, that covers the period 1487–1992, was analyzed for the marine biogenic sulfur species methanesulfonate (MS). Empirical orthogonal function analysis is used to calibrate the high-resolution MS series with associated environmental series for the period of overlap (1973–92). Utilizing this calibration we present a ~500 year long proxy record of the polar expression of the El Niño–Southern Oscillation (ENSO) and southeastern Pacific sea-ice extent variations. These records reveal short-term periods of increased (1800–50, 1900–40) and decreased sea-ice extent (1550–1610, 1660–1710, 1760–1800). In general, increased (decreased) sea-ice extent is associated with a higher (lower) frequency of El Niño events
    corecore