28 research outputs found

    Stable isotopic indicators of population structure and natal habitats of Asian carps threatening to invade the Great Lakes

    Get PDF
    Understanding early-life habitats is crucial for managing non-indigenous large river fishes such as silver carp that are threatening to invade the Great Lakes and may significantly impact economically valuable Great Lakes fisheries. Silver carp inhabiting the upper Illinois River directly below the electrical deterrent barrier (installed on a canal in the Chicago area that connects the Illinois River with Lake Michigan) possess the greatest potential to invade the Great Lakes. However, adult silver carp inhabiting this reach of the Illinois River may have originated from many points throughout the Mississippi River basin (e.g., Illinois River or Middle Mississippi River), and the relative importance of these potential origination locations is unknown. As such, this study was used to identify natal habitats of adult silver carp in the upper portion of the Illinois River. Based on the stable oxygen and stable carbon isotopes of otoliths (earstones) from individual fish, we have determined that silver carp inhabiting the area below the electric barrier originated from within the Illinois River itself, the Middle Mississippi River, and floodplain lakes along the lower Illinois River valley. Because of the geographically widespread points of origin for individual fish, management efforts for eradication or control of silver carp in the upper Illinois River should be directed at a similarly broad geographic scale. While potentially challenging to implement, large-scale removal of silver carp and the closely related bighead carp in the Illinois and Mississippi Rivers could greatly reduce the probability of these species breaching the electrical barriers and entering the Great Lakes

    Listening with the invasive fish ear : applications and innovations of otolith chemistry analysis in invasive fish biology

    Get PDF
    Acquisition of biological information on invasive fishes during the early stages of invasion could be critical in orienting subsequent management strategies. To achieve such a task, biological invasion researchers and practitioners take advantage of numerous technologies (e.g. genomics and acoustic telemetry). Surprisingly, the study of invasive fish ecology by analysis of the chemical composition of calcium carbonate hard parts (e.g. otoliths and scales) remains underutilized, despite some convincing examples of successful applications in the scientific literature. Among its most common applications in invasion biology, otolith chemistry has been used to identify natal origins, reconstruct migratory behaviour and assess mixed-stock structure. In this literature review, we provide a general overview of those previous applications but more importantly identify some gaps and obstacles to applications of otolith chemistry in invasion biology and suggest development for innovative applications, including use in wildlife forensic sciences and reconstruction of the early dynamics of invasions

    Riparian Shading and Groundwater Enhance Growth Potential for Smallmouth Bass in Ozark Streams

    Get PDF
    Moderation of stream temperatures by riparian shading and groundwater are known to promote growth and survival of salmonid fishes, but effects of riparian shade and groundwater on to be growth of warmwater stream fishes are poorly understood or assumed to be negligible. We used stream temperature models to relate shading from riparian vegetation and groundwater inflow to summer water temperatures in Missouri Ozark streams and evaluated effects of summer water temperatures on smallmouth bass, Micropterus dolomieu, growth using a bioenergetics model. Bioenergetics model simulations revealed that adult smallmouth bass in non-spring-fed streams have lower growth potential during summer than fish in spring-fed streams, are subject to mass loss when stream temperatures exceed 27°C, and will likely exhibit greater interannual variation in growth during summer if all growth-influencing factors, other than temperature, are identical between the two stream types. Temperature models indicated that increased riparian shading will expand the longitudinal extent of thermal habitat capable of supporting adult smallmouth bass growth in spring-fed stream reaches when mean daily air temperatures exceed 27°C. Optimum growth temperature (22°C) will be present only in spring-fed streams under these conditions. Potential for increasing shade through riparian restoration is greatest for streams \u3c5 m wide and along north–south reaches of larger streams. However, temperature models also indicated that restoring riparian shading to maximum levels throughout a watershed would increase the total stream mileage capable of supporting positive growth of adult smallmouth bass by only 1–6% when air temperatures are at or near average summer maxima; increases in suitable thermal habitat would be greatest in watersheds with higher spring densities. Riparian management for maintenance or restoration of the thermal habitat of adult smallmouth bass during summer should be focused in areas strongly influenced by groundwater. Restoring riparian shading along spring-fed warmwater streams will likely benefit adult smallmouth bass growth and may ultimately influence population sizes

    Recruitment Sources of Channel and Blue Catfishes Inhabiting the Middle Mississippi River

    Get PDF
    Insight into environments that contribute recruits to adult fish stocks in riverine systems is vital for effective population management and conservation. Catfish are an important recreational species in the Mississippi River and are commercially harvested. However, contributions of main channel and tributary habitats to catfish recruitment in large rivers are unknown. Stable isotope and trace elemental signatures in otoliths are useful for determining environmental history of fishes in a variety of aquatic systems, including the Mississippi River. The objectives of this study were to identify the principal natal environments of channel catfish Ictalurus punctatus and blue catfish I. furcatus in the middle Mississippi River (MMR) using otolith stable oxygen isotopic composition (δ18O) and strontium:calcium ratios (Sr:Ca). Catfishes were sampled during July-October 2013-2014 and lapilli otoliths were analyzed for δ18O and Sr:Ca. Water samples from the MMR and tributaries were collected seasonally from 2006-2014 to characterize site-specific signatures. Persistent differences in water δ18O and Sr:Ca among the MMR and tributaries (including the upper Mississippi, Illinois, and Missouri rivers as well as smaller tributaries) were evident, enabling identification of natal environment for individual fish. Blue and channel catfish stocks in the MMR primarily recruited from the large rivers (Missouri and Mississippi) in our study area, with minimal contributions from smaller tributaries. Recruitment and year class strength investigations and efforts to enhance spawning and nursery habitats should be focused in the large rivers with less emphasis in smaller tributaries

    Stable Hydrogen Isotopic Composition of Fishes Reflects that of Their Environment

    Get PDF
    Otolith microchemistry and isotopic analyses have emerged as effective techniques for providing insights into fish environmental history that are difficult to obtain by other means. Stable hydrogen isotope ratio (2H/1H or D/H, expressed as δD) is a possible environmental marker that has not been employed in fish provenance research, although it has been applied as a natural tracer of terrestrial organism migrations. We illustrate the potential of δD to serve as a new natural marker of fish environmental history by demonstrating that significant linear relationships (r2 ≥ 0.97) exist between fish otolith and muscle δD and δD of waters that fish inhabit. Differences between mean water δD and both muscle and otolith δD were not significantly correlated with fish total length and were not significantly different among species, indicating that water–fish δD relationships are consistent across fish sizes and species. High r2 values for regressions of otolith and muscle δD on water δD for fishes inhabiting locations with diverse thermal regimes suggest that relationships between water and fish δD are not strongly affected by water temperature. Demonstration that fish δD clearly reflects water δD provides a foundation for future research to reconstruct fish movement among locations with distinct δD signatures

    Early generation hybrids may drive range expansion of two invasive fishes DataSet

    Get PDF
    Introgressive hybridization between two invasive species has the potential to contribute to their invasion success and provide genetic resiliency to rapidly adapt to new environments. Additionally, differences in the behaviour of hybrids may lead to deleterious ecosystem effects that compound any negative impacts of the invading parental species. Invasive silver carp (Hypophthalmichthys molitrix) and bighead carp (H. nobilis) exhibit introgressive hybridization which could influence their invasion ecology. In order to investigate the role hybrids may have in the invasion ecology of bigheaded carps, [CAA1] we examined the distribution, movements, and environmental cues for movement of two invasive fishes (bighead carp, silver carp) and their hybrids in the Illinois River (USA). Early generation hybrids (e.g., F1,F2, and first generation backcross individuals) composed a greater proportion of the population at the invasion front where abundances of bigheaded carp were low. A greater proportion of early hybrids passed through dams upstream towards the invasion front than did other hybrids and parental species. The movements and environmental cues for movement of late-generation backcrosses (more genetically similar to parental genotype) were not different from the parental species with which they shared the most alleles. Although the direction of the relationship between movement and environment was sometimes different for the parental species and associated advanced generation hybrids, these results indicate that management for parental species will also influence most hybrids. Although early generation hybrids are rare, our results indicate they may disperse towards low-density population zones (i.e., invasion fronts) or are produced at greater frequency in low density areas. These rare hybrids have the potential to produce a variety of unique genetic combinations which could result in more rapid adaptation of a non-native population to their invaded range potentially facilitating the establishment of invasive species

    Improvement of Bioenergetics Model Predictions for Fish Undergoing Compensatory Growth

    Get PDF
    A previous evaluation of a bioenergetics model applied to juvenile hybrid sunfish (F1 hybrid of female green sunfish Lepomis cyanellus × male bluegill L. macrochirus) undergoing compensatory growth (CG) indicated that the model substantially overestimated growth and underestimated cumulative consumption. This result suggested that fish bioenergetics models might not adequately account for physiological shifts that occur during CG. However, we demonstrate that application of a recently developed procedure for correcting consumption- and growth-rate-dependent systematic errors common among bioenergetics models negates much of the predictive error that had been attributed to the physiological complexities of CG. Correction equations for estimating the model-relative growth rate error (predicted less observed; g · g−1 · d−1) from the observed mean daily consumption rate (g · g−1 · d−1) and the consumption rate error (predicted less observed; g · g−1 · d−1) from the observed relative growth rate (g · g−1 · d−1) were derived by applying linear regression analysis to data from individual hybrid sunfish not undergoing CG. These independently generated correction equations significantly improved model predictions of growth and cumulative consumption for three groups of fish undergoing CG at one temperature near their growth optimum. The findings indicate that the high consumption and growth rates characteristic of fish undergoing CG merely amplify the consumption- and growth-rate-dependent errors inherent in bioenergetics models and that model predictions for fish undergoing CG can be significantly improved through application of the correction procedure

    Establishment of invasive Black Carp (\u3ci\u3eMylopharyngodon piceus\u3c/i\u3e) in the Mississippi River basin: identifying sources and year classes contributing to recruitment

    Get PDF
    Black Carp (Mylopharyngodon piceus) was imported to the USA to control aquaculture pond snails. This species has escaped captivity and occurs in parts of the Mississippi River, several tributaries, and floodplain lakes, which is concerning due to potential competition with native fishes and predation on native mussels, many of which are imperiled. However, Black Carp captures have primarily been incidental by commercial fishers, and evidence of reproduction in the wild is limited. The objectives of this study were to assess relative abundance of aquaculture- origin and wild Black Carp using ploidy and otolith stable isotope analysis, identify spatial extent of natural reproduction using otolith microchemistry, assess age distributions of wild and aquaculturesource Black Carp to infer years in which natural reproduction occurred and timing of aquaculture escapement or introductions, and estimate size and age at maturation to assess whether recruitment to adulthood has occurred. Results revealed that Black Carp are established in parts of the Mississippi River basin based on findings that: (1) non-captive Black Carp primarily consist of fertile, naturally-reproduced fish, (2) reproduction has occurred in several rivers, (3) multiple year classes of wild fish are present, and (4) wild fish have recruited to adulthood. Multiple introductions or escapements of aquaculture-source fish into the wild, including both fertile and functionally sterile individuals, were also inferred. Individual growth appears to be rapid, although considerable variation was observed among fish. Additional study is suggested to refine understanding of where and when Black Carp reproduction is occurring in the Mississippi River basin

    Long-Term PIT and T-Bar Anchor Tag Retention Rates in Adult Muskellunge

    Get PDF
    Mark-recapture studies require knowledge of tag retention rates specific to tag types, fish species and size, and study duration. We determined the probability of tag loss for passive integrated transponder (PIT) tags implanted into dorsal musculature, T-bar anchor tags attached to dorsal pterygiophores, and loss of both tags in relation to years post-tagging for double-marked adult muskellunge Esox masquinongy over a 10 year period. We also used PIT tags as a benchmark to assess the interactive effects of fish length at tagging, sex, and years post-tagging on T-bar anchor tag loss rates. Only five instances of PIT tag loss were identified; the calculated probability of a fish losing its PIT tag was consistently \u3c 1.0% for up to 10 years post-tagging. The probability of T-bar anchor tag loss by muskellunge was related to the number of years post-tagging and total length of fish at tagging. T-bar anchor tag loss rate one year after tagging was 6.5%. Individuals \u3c 750 mm total length at tagging had anchor tag loss rates \u3c 10% for up to 6 years after tagging. However, the proportion of fish losing T-bar anchor tags steadily increased with increasing years post-tagging (~30% after 6 years) for larger muskellunge. Fish gender did not influence probability of T-bar anchor tag loss. Our results indicate that T-bar anchor tags are best suited for short-term applications (≤ 1 year duration) involving adult muskellunge. We recommend use of PIT tags for longer-term tagging studies, particularly for muskellunge \u3e 750 mm total length

    Habitat Characteristics of Black Crappie Nest Sites in an Illinois Impoundment

    Get PDF
    Ten nest colonies of black crappie Pomoxis nigromaculatus were visually located and verified by angling in Campus Lake, a small urban impoundment in southern Illinois. Habitat characteristics were measured at these nest sites and compared to habitat measurements obtained from 45 unused sites. Seven habitat characteristics (substrate firmness, temperature, dissolved oxygen, distance to deep water [3.8-m depth contour], substrate type, vegetation height, and vegetation density) were significantly different between nest sites and unused sites. Although temperature and dissolved oxygen were significantly different between nest sites and unused sites, all values were within the suitable range for black crappie spawning to occur. Black crappies selected nest sites close to deep water with firm substrates and low vegetation height and density. Our results present insight on habitat characteristics of black crappie spawning locations in a small urban impoundment. Interestingly, we located several black crappie nesting colonies with more than 10 individual nests in close proximity to one another; colonial nesting by black crappies has not previously been reported in the literature. Furthermore, we suggest that degree of shoreline modification and other anthropogenic influences in and adjacent to Campus Lake did not affect black crappie nest site selection. Black crappie nest sites in Campus Lake were always located near deep water (3.8 m), in low-density, short vegetation, and on firm clay or sand substrate; because nest site selection can influence earlylife survival and recruitment of black crappie, the availability of these habitat characteristics may regulate black crappie population demographics in Campus Lake. Efforts to limit sediment inputs will be important for maintaining suitable black crappie spawning habitat in Campus Lake and other small impoundments
    corecore