3,261 research outputs found

    Neuraminidase Activity in \u3cem\u3eDiplococcus pneumoniae\u3c/em\u3e

    Get PDF
    Kelly, R. T. (Marquette University School of Medicine, Milwaukee, Wis.), D. Greiff, and S. Farmer. Neuraminidase activity in Diplococcus pneumoniae. J. Bacteriol. 91:601–603. 1966.—A method for the quantitation of neuraminidase in the presence of N-acetylneuraminic acid aldolase is described. The neuraminidase content of Diplococcus pneumoniae was found to be dependent on the media employed for growth; the highest enzyme activity per milligram of bacterial protein was obtained with Todd-Hewitt broth. Neuraminidase production was stimulated in D. pneumoniae by the addition of N-acetylneuraminlactose, N-acetylneuraminic acid, or N-acetylmannosamine to the growth medium. Three rough strains of D. pneumoniae, which were nonpathogenic for mice, lacked neuraminidase activity. Seven of 12 smooth strains contained neuraminidase; enzyme activity was not detected in the remaining 5 smooth strains. There was no correlation between the presence of neuraminidase activity and the capsular type or between neuraminidase production and animal virulence

    Systematic reduction of complex tropospheric chemical mechanisms, Part II: Lumping using a time-scale based approach

    Get PDF
    This paper presents a formal method of species lumping that can be applied automatically to intermediate compounds within detailed and complex tropospheric chemical reaction schemes. The method is based on grouping species with reference to their chemical lifetimes and reactivity structures. A method for determining the forward and reverse transformations between individual and lumped compounds is developed. Preliminary application to the Leeds Master Chemical Mechanism (MCMv2.0) has led to the removal of 734 species and 1777 reactions from the scheme, with minimal degradation of accuracy across a wide range of test trajectories relevant to polluted tropospheric conditions. The lumped groups are seen to relate to groups of peroxy acyl nitrates, nitrates, carbonates, oxepins, substituted phenols, oxeacids and peracids with similar lifetimes and reaction rates with OH. In combination with other reduction techniques, such as sensitivity analysis and the application of the quasi-steady state approximation (QSSA), a reduced mechanism has been developed that contains 35% of the number of species and 40% of the number of reactions compared to the full mechanism. This has led to a speed up of a factor of 8 in terms of computer calculation time within box model simulations

    Systematic reduction of complex tropospheric chemical mechanisms, Part I: sensitivity and time-scale analyses

    Get PDF
    International audienceExplicit mechanisms describing the complex degradation pathways of atmospheric volatile organic compounds (VOCs) are important, since they allow the study of the contribution of individual VOCS to secondary pollutant formation. They are computationally expensive to solve however, since they contain large numbers of species and a wide range of time-scales causing stiffness in the resulting equation systems. This paper and the following companion paper describe the application of systematic and automated methods for reducing such complex mechanisms, whilst maintaining the accuracy of the model with respect to important species and features. The methods are demonstrated via application to version 2 of the Leeds Master Chemical Mechanism. The methods of Jacobian analysis and overall rate sensitivity analysis proved to be efficient and capable of removing the majority of redundant reactions and species in the scheme across a wide range of conditions relevant to the polluted troposphere. The application of principal component analysis of the rate sensitivity matrix was computationally expensive due to its use of the decomposition of very large matrices, and did not produce significant reduction over and above the other sensitivity methods. The use of the quasi-steady state approximation (QSSA) proved to be an extremely successful method of removing the fast time-scales within the system, as demonstrated by a local perturbation analysis at each stage of reduction. QSSA species were automatically selected via the calculation of instantaneous QSSA errors based on user-selected tolerances. The application of the QSSA led to the removal of a large number of alkoxy radicals and excited Criegee bi-radicals via reaction lumping. The resulting reduced mechanism was shown to reproduce the concentration profiles of the important species selected from the full mechanism over a wide range of conditions, including those outside of which the reduced mechanism was generated. As a result of a reduction in the number of species in the scheme of a factor of 2, and a reduction in stiffness, the computational time required for simulations was reduced by a factor of 4 when compared to the full scheme

    Systematic reduction of complex tropospheric chemical mechanisms using sensitivity and time-scale analyses

    No full text
    International audienceExplicit mechanisms describing the complex degradation pathways of atmospheric volatile organic compounds (VOCs) are important, since they allow the study of the contribution of individual VOCS to secondary pollutant formation. They are computationally expensive to solve however, since they contain large numbers of species and a wide range of time-scales causing stiffness in the resulting equation systems. This paper and the following companion paper describe the application of systematic and automated methods for reducing such complex mechanisms, whilst maintaining the accuracy of the model with respect to important species and features. The methods are demonstrated via application to version 2 of the Leeds Master Chemical Mechanism. The methods of local concentration sensitivity analysis and overall rate sensitivity analysis proved to be efficient and capable of removing the majority of redundant reactions and species in the scheme across a wide range of conditions relevant to the polluted troposphere. The application of principal component analysis of the rate sensitivity matrix was computationally expensive due to its use of the decomposition of very large matrices, and did not produce significant reduction over and above the other sensitivity methods. The use of the quasi-steady state approximation (QSSA) proved to be an extremely successful method of removing the fast time-scales within the system, as demonstrated by a local perturbation analysis at each stage of reduction. QSSA species were automatically selected via the calculation of instantaneous QSSA errors based on user-selected tolerances. The application of the QSSA led to the removal of a large number of alkoxy radicals and excited Criegee bi-radicals via reaction lumping. The resulting reduced mechanism was shown to reproduce the concentration profiles of the important species selected from the full mechanism over a wide range of conditions, including those outside of which the reduced mechanism was generated. As a result of a reduction in the number of species in the scheme of a factor of 2, and a reduction in stiffness, the computational time required for simulations was reduced by a factor of 4 when compared to the full scheme

    Systematic lumping of complex tropospheric chemical mechanisms using a time-scale based approach

    No full text
    International audienceThis paper presents a formal method of species lumping that can be applied automatically to intermediate compounds within detailed and complex tropospheric chemical reaction schemes. The method is based on grouping species with reference to their chemical lifetimes and reactivity structures. A method for determining the forward and reverse transformations between individual and lumped compounds is developed. Preliminary application to the Leeds Master Chemical Mechanism (MCMv2.0) has led to the removal of 734 species and 1777 reactions from the scheme, with minimal degradation of accuracy across a wide range of test trajectories relevant to polluted tropospheric conditions. The lumped groups are seen to relate to groups of peroxy acyl nitrates, nitrates, carbonates, oxepins, substituted phenols, oxeacids and peracids with similar lifetimes and reaction rates with OH. In combination with other reduction techniques, such as sensitivity analysis and the application of the quasi-steady state approximation (QSSA), a reduced mechanism has been developed that contains 35% of the number of species and 40% of the number of reactions compared to the full mechanism. This has led to a speed up of a factor of 8 in terms of computer calculation time within box model simulations

    A novel profiling concept leading to a significant increase in the mechanical performance of metal to composite joints

    Get PDF
    In this work, we designed metal-CFRP joints with a profiled adherend termination to improve the mechanical performance. We have applied several profiles to the edge of titanium adherends which were adhesively bonded to CFRP substrates. We conducted finite element modelling and experimental 4PB (4-Point-Bend) testing to investigate how the geometry of the adherend edge profile effects the mechanical performance of the joint. This work shows that profiling of the metal adherend can result in increases of at least 27% in the peak load, and of at least 272% in the energy dissipated up to critical failure normalised by the mechanical energy

    Outbreak of gastroenteritis caused by Yersinia pestis in Afghanistan.

    Get PDF
    Plague, which is most often caused by the bite of Yersinia pestis-infected fleas, is a rapidly progressing, serious disease that can be fatal without prompt antibiotic treatment. In late December 2007, an outbreak of acute gastroenteritis occurred in Nimroz Province of southern Afghanistan. Of the 83 probable cases of illness, 17 died (case fatality 20·5%). Being a case was associated with consumption or handling of camel meat (adjusted odds ratio 4·4, 95% confidence interval 2·2-8·8, P<0·001). Molecular testing of patient clinical samples and of tissue from the camel using PCR/electrospray ionization-mass spectrometry revealed DNA signatures consistent with Yersinia pestis. Confirmatory testing using real-time PCR and immunological seroconversion of one of the patients confirmed that the outbreak was caused by plague, with a rare gastrointestinal presentation. The study highlights the challenges of identifying infectious agents in low-resource settings; it is the first reported occurrence of plague in Afghanistan

    Are autistic traits in the general population stable across development?

    Get PDF
    There is accumulating evidence that autistic traits (AT) are on a continuum in the general population, with clinical autism representing the extreme end of a quantitative distribution. While the nature and severity of symptoms in clinical autism are known to persist over time, no study has examined the long-term stability of AT among typically developing toddlers. The current investigation measured AT in 360 males and 400 males from the general population close to two decades apart, using the Pervasive Developmental Disorder subscale of the Child Behavior Checklist in early childhood (M = 2.14 years; SD = 0.15), and the Autism-Spectrum Quotient in early adulthood (M = 19.50 years; SD = 0.70). Items from each scale were further divided into social (difficulties with social interaction and communication) and non-social (restricted and repetitive behaviours and interests) AT. The association between child and adult measurements of AT as well the influence of potentially confounding sociodemographic, antenatal and obstetric variables were assessed using Pearson's correlations and linear regression. For males, Total AT in early childhood were positively correlated with total AT (r = .16, p = .002) and social AT (r = .16, p = .002) in adulthood. There was also a positive correlation for males between social AT measured in early childhood and Total (r = .17, p = .001) and social AT (r = .16, p = .002) measured in adulthood. Correlations for non-social AT did not achieve significance in males. Furthermore, there was no significant longitudinal association in AT observed for males or females. Despite the constraints of using different measures and different raters at the two ages, this study found modest developmental stability of social AT from early childhood to adulthood in boys

    Gravitational waves from supernova matter

    Full text link
    We have performed a set of 11 three-dimensional magnetohydrodynamical core collapse supernova simulations in order to investigate the dependencies of the gravitational wave signal on the progenitor's initial conditions. We study the effects of the initial central angular velocity and different variants of neutrino transport. Our models are started up from a 15 solar mass progenitor and incorporate an effective general relativistic gravitational potential and a finite temperature nuclear equation of state. Furthermore, the electron flavour neutrino transport is tracked by efficient algorithms for the radiative transfer of massless fermions. We find that non- and slowly rotating models show gravitational wave emission due to prompt- and lepton driven convection that reveals details about the hydrodynamical state of the fluid inside the protoneutron stars. Furthermore we show that protoneutron stars can become dynamically unstable to rotational instabilities at T/|W| values as low as ~2 % at core bounce. We point out that the inclusion of deleptonization during the postbounce phase is very important for the quantitative GW prediction, as it enhances the absolute values of the gravitational wave trains up to a factor of ten with respect to a lepton-conserving treatment.Comment: 10 pages, 6 figures, accepted, to be published in a Classical and Quantum Gravity special issue for MICRA200
    corecore