3,291 research outputs found

    Cardiovascular Dynamics in Crocodylus porosus Breathing Air and During Voluntary Aerobic Dives

    Get PDF
    Pressure records from the heart and outflow vessels of the heart of Crocodylus porosus resolve previously conflicting results, showing that left aortic filling via the foramen of Panizza may occur during both cardiac diastole and systole. Filling of the left aorta during diastole, identified by the asynchrony and comparative shape of pressure events in the left and right aortae, is reconciled more easily with the anatomy, which suggests that the foramen would be occluded by opening of the pocket valves at the base of the right aorta during systole. Filling during systole, indicated when pressure traces in the left and right aortae could be superimposed, was associated with lower systemic pressures, which may occur at the end of a voluntary aerobic dive or can be induced by lowering water temperature or during a long forced dive. To explain this flexibility, we propose that the foramen of Panizza is of variable calibre. The presence of a 'right-left' shunt, in which increased right ventricular pressure leads to blood being diverted from the lungs and exiting the right ventricle via the left aorta, was found to be a frequent though not obligate correlate of voluntary aerobic dives. This contrasts with the previous concept of the shunt as a correlate of diving bradycardia. The magnitude of the shunt is difficult to assess but is likely to be relatively small. This information has allowed some new insights into the functional significance of the complex anatomy of the crocodilian heart and major blood vessels

    Icebergs in the North Atlantic: Modelling circulation changes and glacio-marine deposition

    Get PDF
    In order to investigate meltwater events in the North Atlantic, a simple iceberg generation, drift, and melting routine was implemented in a high-resolution OGCM. Starting from the modelled last glacial state, every 25th day cylindrical model icebergs 300 meters high were released at 32 specific points along the coasts. Icebergs launched at the Barents Shelf margin spread a light meltwater lid over the Norwegian and Greenland Seas, shutting down the deep convection and the anti-clockwise circulation in this area. Due to the constraining ocean circulation, the icebergs produce a tongue of relatively cold and fresh water extending eastward from Hudson Strait that must develop at this location, regardless of iceberg origin. From the total amount of freshwater inferred by the icebergs, the thickness of the deposited IRD could be calculated in dependance of iceberg sediment concentration. In this way, typical extent and thickness of Heinrich layers could be reproduced, running the model for 250 years of steady state with constant iceberg meltwater inflow

    Standardising terminology and notation for the analysis of demographic processes in marked populations

    Get PDF
    The development of statistical methods for the analysis of demographic processes in marked animal populations has brought with it the challenges of communication between the disciplines of statistics, ecology, evolutionary biology and computer science. In order to aid communication and comprehension, we sought to root out a number of cases of ambiguity, redundancy and inaccuracy in notation and terminology that have developed in the literature. We invited all working in this field to submit topics for resolution and to express their own views. In the ensuing discussion forum it was then possible to establish a series of general principles which were, almost without exception, unanimously accepted. Here we set out the background to the areas of confusion, how these were debated and the conclusions which were reached in each case. We hope that the resulting guidelines will be widely adopted as standard terminology in publications and in software for the analysis of demographic processes in marked animal populationspostprin

    Denitrification and nitrous oxide emissions from riparian forests soils exposed to prolonged nitrogen runoff

    Get PDF
    Compared to upland forests, riparian forest soils have greater potential to remove nitrate (NO3) from agricultural run-off through denitrification. It is unclear, however, whether prolonged exposure of riparian soils to nitrogen (N) loading will affect the rate of denitrification and its end products. This research assesses the rate of denitrification and nitrous oxide (N2O) emissions from riparian forest soils exposed to prolonged nutrient run-off from plant nurseries and compares these to similar forest soils not exposed to nutrient run-off. Nursery run-off also contains high levels of phosphate (PO4). Since there are conflicting reports on the impact of PO4 on the activity of denitrifying microbes, the impact of PO4 on such activity was also investigated. Bulk and intact soil cores were collected from N-exposed and non-exposed forests to determine denitrification and N2O emission rates, whereas denitrification potential was determined using soil slurries. Compared to the non-amended treatment, denitrification rate increased 2.7- and 3.4-fold when soil cores collected from both N-exposed and non-exposed sites were amended with 30 and 60 μg NO3-N g-1 soil, respectively. Net N2O emissions were 1.5 and 1.7 times higher from the N-exposed sites compared to the non-exposed sites at 30 and 60 μg NO3-N g-1 soil amendment rates, respectively. Similarly, denitrification potential increased 17 times in response to addition of 15 μg NO3-N g-1 in soil slurries. The addition of PO4 (5 μg PO4–P g-1) to soil slurries and intact cores did not affect denitrification rates. These observations suggest that prolonged N loading did not affect the denitrification potential of the riparian forest soils; however, it did result in higher N2O emissions compared to emission rates from non-exposed forests

    Effects of growth rate, size, and light availability on tree survival across life stages: a demographic analysis accounting for missing values and small sample sizes.

    Get PDF
    The data set supporting the results of this article is available in the Dryad repository, http://dx.doi.org/10.5061/dryad.6f4qs. Moustakas, A. and Evans, M. R. (2015) Effects of growth rate, size, and light availability on tree survival across life stages: a demographic analysis accounting for missing values.Plant survival is a key factor in forest dynamics and survival probabilities often vary across life stages. Studies specifically aimed at assessing tree survival are unusual and so data initially designed for other purposes often need to be used; such data are more likely to contain errors than data collected for this specific purpose

    Resonances and Surface Waves in Elastic Wave Scattering from Cavities and Inclusions

    Full text link
    Elastic-wave scattering from various types of cavities and inclusions has been studied theoretically with special emphasis on surface wave effects that appear during the scattering process. Resonances in the scattering amplitudes are caused by the phase matching of circumnavigating surface waves, and manifest themselves as poles in the complex frequency plane that correspond to the (complex) eigenfrequencies of the cavity of inclusion. These results are most easily obtained for scatterers of separable geometry, such as spheres, where theoretical amplitudes are well-known. Here, the formalism for a complete treatment of elastic-wave scattering from infinite cylindrical cavities and solid inclusions has been worked out for general oblique incidence. Poles of scattering amplitudes have been found for evacuated and for fluid-filled cylinders, and have been physically interpreted in terms of helical surface waves propagating both interior and exterior to the cylinder. Dispersion, attenuation, and refraction of these surface waves have been obtained. Progressing to more generally-shaped obstacles, we have studied surface waves and complex-frequency poles for finite- length cylindrical cavities with flat ends. In this fashion, the resonance features(particularly the cavity eigenfrequencies) that appear prominently in the scattering amplitude can be understood as to their physical origin and their dependence on the type of cavity, and may be exploited for purposes of classification and identification of flaws by their ultrasonic resonances (ultrasonic “resonance spectroscopy”)
    corecore