70,504 research outputs found
Resolving the virial discrepancy in clusters of galaxies with modified Newtonian dynamics
A sample of 197 X-ray emitting clusters of galaxies is considered in the
context of Milgrom's modified Newtonian dynamics (MOND). It is shown that the
gas mass, extrapolated via an assumed model to a fixed radius of 3 Mpc,
is correlated with the gas temperature as predicted by MOND (). The observed temperatures are generally consistent with the inferred
mass of hot gas; no substantial quantity of additional unseen matter is
required in the context of MOND. However, modified dynamics cannot resolve the
strong lensing discrepancy in those clusters where this phenomenon occurs. The
prediction is that additional baryonic matter may be detected in the central
regions of rich clusters.Comment: Submitted to A&A, 4 pages, 3 figures, A&A macro
Effect of the W-term for a t-U-W Hubbard ladder
Antiferromagnetic and d_{x2-y2}-pairing correlations appear delicately
balanced in the 2D Hubbard model. Whether doping can tip the balance to pairing
is unclear and models with additional interaction terms have been studied. In
one of these, the square of a local hopping kinetic energy H_W was found to
favor pairing. However, such a term can be separated into a number of simpler
processes and one would like to know which of these terms are responsible for
enhancing the pairing. Here we analyze these processes for a 2-leg Hubbard
ladder
Neel order in square and triangular lattice Heisenberg models
Using examples of the square- and triangular-lattice Heisenberg models we
demonstrate that the density matrix renormalization group method (DMRG) can be
effectively used to study magnetic ordering in two-dimensional lattice spin
models. We show that local quantities in DMRG calculations, such as the on-site
magnetization M, should be extrapolated with the truncation error, not with its
square root, as previously assumed. We also introduce convenient sequences of
clusters, using cylindrical boundary conditions and pinning magnetic fields,
which provide for rapidly converging finite-size scaling. This scaling behavior
on our clusters is clarified using finite-size analysis of the effective
sigma-model and finite-size spin-wave theory. The resulting greatly improved
extrapolations allow us to determine the thermodynamic limit of M for the
square lattice with an error comparable to quantum Monte Carlo. For the
triangular lattice, we verify the existence of three-sublattice magnetic order,
and estimate the order parameter to be M = 0.205(15).Comment: 4 pages, 5 figures, typo fixed, reference adde
Diffusion and phase change characterization by mass spectrometry
The high temperature diffusion of trace elements in metals and alloys was investigated. Measurements were made by high sensitivity mass spectrometry in which individual atoms were detected, and quantitative data was obtained for zircaloy-2, 304 stainless steel, and tantalum. Additionally, a mass spectrometer was also an analytical tool for determining an allotropic phase change for stainless steel at 955 C, and a phase transition region between 772 C and 1072 C existing for zircaloy-2. Diffusion rates were measured in thin (0.001" (0.0025 cm) and 0.0005" (0.0013 cm)) ribbons which were designed as high temperature thermal ion sources, with the alkali metals as naturally occurring impurities. In the temperature and pressure regime where diffusion measurements were made, the solute atoms evaporated from the ribbon filaments when the impurities diffused to the surface, with a fraction of these impurity atoms ionized according to the Langmuir-Saha relation. The techniques developed can be applied to many other alloys important to space vehicles and supersonic transports; and, with appropriate modifications, to the diffusion of impurities in composites
Airborne antenna coverage requirements for the TCV B-737 aircraft
The airborne antenna line of sight look angle requirement for operation with a Microwave Landing System (MLS) was studied. The required azimuth and elevation line of sight look angles from an antenna located on an aircraft to three ground based antenna sites at the Wallops Flight Center (FPS-16 radar, MLS aximuth, and MLS elevation) as the aircraft follows specific approach paths selected as representative of MLS operations at the Denver, Colorado, terminal area are presented. These required azimuth and elevation look angles may be interpreted as basic design requirements for antenna of the TCV B-737 airplane for MLS operations along these selected approach paths
The diffuse neutrino flux from the inner Galaxy: constraints from very high energy gamma-ray observations
Recently, the MILAGRO collaboration reported on the detection of a diffuse
multi-TeV emission from a region of the Galactic disk close to the inner
Galaxy. The emission is in excess of what is predicted by conventional models
for cosmic ray propagation, which are tuned to reproduce the spectrum of cosmic
rays observed locally. By assuming that the excess detected by MILAGRO is of
hadronic origin and that it is representative for the whole inner Galactic
region, we estimate the expected diffuse flux of neutrinos from a region of the
Galactic disk with coordinates . Our estimate has
to be considered as the maximal expected neutrino flux compatible with all the
available gamma ray data, since any leptonic contribution to the observed
gamma-ray emission would lower the neutrino flux. The diffuse flux of
neutrinos, if close to the maximum allowed level, may be detected by a
km--scale detector located in the northern hemisphere. A detection would
unambiguously reveal the hadronic origin of the diffuse gamma-ray emission.Comment: submitted to Astroparticle Physic
Recommended from our members
Beyond Critical Period Learning: Striatal FoxP2 Affects the Active Maintenance of Learned Vocalizations in Adulthood.
In humans, mutations in the transcription factor forkhead box P2 (FOXP2) result in language disorders associated with altered striatal structure. Like speech, birdsong is learned through social interactions during maturational critical periods, and it relies on auditory feedback during initial learning and on-going maintenance. Hearing loss causes learned vocalizations to deteriorate in adult humans and songbirds. In the adult songbird brain, most FoxP2-enriched regions (e.g., cortex, thalamus) show a static expression level, but in the striatal song control nucleus, area X, FoxP2 is regulated by singing and social context: when juveniles and adults sing alone, its levels drop, and songs are more variable. When males sing to females, FoxP2 levels remain high, and songs are relatively stable: this "on-line" regulation implicates FoxP2 in ongoing vocal processes, but its role in the auditory-based maintenance of learned vocalization has not been examined. To test this, we overexpressed FoxP2 in both hearing and deafened adult zebra finches and assessed effects on song sung alone versus songs directed to females. In intact birds singing alone, no changes were detected between songs of males expressing FoxP2 or a GFP construct in area X, consistent with the marked stability of mature song in this species. In contrast, songs of males overexpressing FoxP2 became more variable and were less preferable to females, unlike responses to songs of GFP-expressing control males. In deafened birds, song deteriorated more rapidly following FoxP2 overexpression relative to GFP controls. Together, these experiments suggest that behavior-driven FoxP2 expression and auditory feedback interact to precisely maintain learned vocalizations
- …