99,639 research outputs found
Reconstructing large-scale structure with neutral hydrogen surveys
Upcoming 21-cm intensity surveys will use the hyperfine transition in emission to map out neutral hydrogen in large volumes of the universe. Unfortunately, large spatial scales are completely contaminated with spectrally smooth astrophysical foregrounds which are orders of magnitude brighter than the signal. This contamination also leaks into smaller radial and angular modes to form a foreground wedge, further limiting the usefulness of 21-cm observations for different science cases, especially cross-correlations with tracers that have wide kernels in the radial direction. In this paper, we investigate reconstructing these modes within a forward modeling framework. Starting with an initial density field, a suitable bias parameterization and non-linear dynamics to model the observed 21-cm field, our reconstruction proceeds by {combining} the likelihood of a forward simulation to match the observations (under given modeling error and a data noise model) {with the Gaussian prior on initial conditions and maximizing the obtained posterior}. For redshifts z=2 and 4, we are able to reconstruct 21cm field with cross correlation, rc > 0.8 on all scales for both our optimistic and pessimistic assumptions about foreground contamination and for different levels of thermal noise. The performance deteriorates slightly at z=6. The large-scale line-of-sight modes are reconstructed almost perfectly. We demonstrate how our method also provides a technique for density field reconstruction for baryon acoustic oscillations, outperforming standard methods on all scales. We also describe how our reconstructed field can provide superb clustering redshift estimation at high redshifts, where it is otherwise extremely difficult to obtain dense spectroscopic samples, as well as open up a wealth of cross-correlation opportunities with projected fields (e.g. lensing) which are restricted to modes transverse to the line of sight
The RHIC Zero Degree Calorimeter
High Energy collisions of nuclei usually lead to the emission of evaporation
neutrons from both ``beam'' and ``target'' nuclei. At the RHIC heavy ion
collider with 100GeV/u beam energy, evaporation neutrons diverge by less than
milliradians from the beam axis Neutral beam fragments can be detected
downstream of RHIC ion collisions (and a large aperture Accelerator dipole
magnet) if 4 mr but charged fragments in the same angular range
are usually too close to the beam trajectory.
In this 'zero degree' region produced particles and other secondaries deposit
negligible energy when compared with that of beam fragmentation neutrons.
The purpose of the RHIC zero degree calorimeters (ZDC's) is to detect
neutrons emitted within this cone along both beam directions and measure their
total energy (from which we calculate multiplicity). The ZDC coincidence of the
2 beam directions is a minimal bias selection of heavy ion collisions. This
makes it useful as an event trigger and a luminosity monitor\cite{baltz} and
for this reason we built identical detectors for all 4 RHIC experiments.
The neutron multiplicity is also known to be correlated with event geometry
\cite{appel} and will be used to measure collision centrality in mutual beam
int eractions.Comment: 18 pages, 12 figure
Real time evolution using the density matrix renormalization group
We describe an extension to the density matrix renormalization group method
incorporating real time evolution into the algorithm. Its application to
transport problems in systems out of equilibrium and frequency dependent
correlation functions is discussed and illustrated in several examples. We
simulate a scattering process in a spin chain which generates a spatially
non-local entangled wavefunction.Comment: 4 pages, 4 eps figures, some minor corrections in text and Eq.(3
A one-step Cu/ZnO Quasi-Homogeneous Catalyst for DME Production from Syn-gas
Colloidal Cu/ZnO nanoparticles combine with γ-Al2O3 to form promising hybrid catalysts for the direct synthesis of dimethyl ether (DME) in liquid phase, showing high activity, selectivity and stability.</p
Competition Between Stripes and Pairing in a t-t'-J Model
As the number of legs n of an n-leg, t-J ladder increases, density matrix
renormalization group calculations have shown that the doped state tends to be
characterized by a static array of domain walls and that pairing correlations
are suppressed. Here we present results for a t-t'-J model in which a diagonal,
single particle, next-near-neighbor hopping t' is introduced. We find that this
can suppress the formation of stripes and, for t' positive, enhance the
d_{x^2-y^2}-like pairing correlations. The effect of t' > 0 is to cause the
stripes to evaporate into pairs and for t' < 0 to evaporate into
quasi-particles. Results for n=4 and 6-leg ladders are discussed.Comment: Four pages, four encapsulated figure
- …
