8,194 research outputs found
Land-Use/Land-Cover Characterization Using an Object-Based Classifier for the Buffalo River Sub-Basin in North-Central Arkansas
Sensors for remote sensing have improved enormously over the past few years and now deliver high resolution multispectral data on an operational basis. Most Land-use/Land-cover (LULC) classifications of high spatial resolution imagery, however, still rely on basic image processing concepts (i.e., image classification using single pixel-based classifiers) developed in the 1970s. This study developed the methodology using an object-based classifier to characterize the LULC for the Buffalo River sub-basin and surrounding areas with a 0.81- hectare (2-acre) minimum mapping unit (MMU). Base imagery for the 11-county classification was orthorectified color-infrared aerial photographs taken from 2000 to 2002 with a one-meter spatial resolution. The object-based classification was conducted using Feature Analyst® , Imagine® , and ArcGIS® software. Feature Analyst® employs hierarchical machine learning techniques to extract the feature class information from the imagery using both spectral and inherent spatial relationships of objects. The methodology developed for the 7-class classification involved both automated and manual interpretation of objects. The overall accuracy of this LULC classification method, which identified more than 146,000 features, was 87.8% for the Buffalo River sub basin and surrounding areas
A Flight Investigation of the Low-Speed Handling Qualities of a Tailless Delta-Wing Fighter Airplane
Carrier landing-approach studies of a tailless delta-wing fighter airplane disclosed that approach speeds were limited by ability to control altitude and lateral-directional characteristics. More detailed flight studies of the handling-qualities characteristics of the airplane in the carrier-approach configuration documented a number of factors that contributed to the adverse comments on the lateral-directional characteristics. These were: (1) the tendency of the airplane to roll around the highly inclined longitudinal axis, so that significant sideslip angles developed in the roll as a result only of kinematic effects; (2) reduction of the rolling response to the ailerons because of the large dihedral effect in conjunction with the kinematically developed sideslip angles; and (3) the onset of rudder lock at moderate angles of sideslip at the lowest speeds with wing tanks installed. The first two of the factors listed are inseparably identified with this type of configuration which is being considered for many of the newer designs and may, therefore, represent a problem which will be encountered frequently in the future. The results are of added significance in the demonstration of a typical situation in which extraneous factors occupy so much of the pilot's attention that his capability of coping with the problems of precise flight-path control is reduced, and he accordingly demands a greater speed margin above the stall to allow for airspeed fluctuations
Carbonyl sulfide exchange in a temperate loblolly pine forest grown under ambient and elevated CO2
Vegetation, soil and ecosystem level carbonyl sulfide (COS) exchange was observed at Duke Forest, a temperate loblolly pine forest, grown under ambient (Ring 1, R1) and elevated (Ring 2, R2) CO2. During calm meteorological conditions, ambient COS mixing ratios at the top of the forest canopy followed a distinct diurnal pattern in both CO2 growth regimes, with maximum COS mixing ratios during the day (R1=380±4 pptv and R2=373±3 pptv, daytime mean ± standard error) and minimums at night (R1=340±6 pptv and R2=346±5 pptv, nighttime mean ± standard error) reflecting a significant nighttime sink. Nocturnal vegetative uptake (−11 to −21 pmol m−2s−1, negative values indicate uptake from the atmosphere) dominated nighttime net ecosystem COS flux estimates (−10 to −30 pmol m−2s−1) in both CO2 regimes. In comparison, soil uptake (−0.8 to −1.7 pmol m−2 s−1) was a minor component of net ecosystem COS flux. In both CO2 regimes, loblolly pine trees exhibited substantial COS consumption overnight (50% of daytime rates) that was independent of CO2 assimilation. This suggests current estimates of the global vegetative COS sink, which assume that COS and CO2 are consumed simultaneously, may need to be reevaluated. Ambient COS mixing ratios, species specific diurnal patterns of stomatal conductance, temperature and canopy position were the major factors influencing the vegetative COS flux at the branch level. While variability in branch level vegetative COS consumption measurements in ambient and enhanced CO2 environments could not be attributed to CO2 enrichment effects, estimates of net ecosystem COS flux based on ambient canopy mixing ratio measurements suggest less nighttime uptake of COS in R2, the CO2 enriched environment
Process to create simulated lunar agglutinate particles
A method of creating simulated agglutinate particles by applying a heat source sufficient to partially melt a raw material is provided. The raw material is preferably any lunar soil simulant, crushed mineral, mixture of crushed minerals, or similar material, and the heat source creates localized heating of the raw material
An ab Initio Investigation of the Stabilization of Selected β-substituted Ethyl Cations and α-substituted Methyl Cations
In this study, we calculate the stabilization of β-substituted ethyl cations (R = H, Li, BeH, BH_2, CH_3, NH_2, OH, F, Na, MgH, AlH_2, SiH_3, PH_2, SH, Cl) and α-substituted methyl cations (R = H, Li, CH_3, NH_2, OH, F, Na, SiH_3, PH_2, SH, Cl) in order to obtain a relationship between the nature of the substituent and the degree of stabilization of the cation. Results show that the stabilization energy is related to the electronegativity of the β substituents, but not the α substituents. The rotational barrier of the β-substituted ethyl cation is linearly related to the Mulliken population of the 2p(C+) orbital. We found that the stabilization energy is linearly related to the ionization potential of the α- and PLA β-substituted radicals, and the HOMO energies of the PLA β-substituted radical are linearly related to the corresponding ionization potentials. Trends in the stabilization by second- and third-row substituents are discussed
Eu2+ spin dynamics in the filled skutterudites EuM4Sb12 (M = Fe, Ru, Os)
We report evidence for a close relation between the thermal activation of the
rattling motion of the filler guest atoms, and inhomogeneous spin dynamics of
the Eu2+ spins. The spin dynamics is probed directly by means of Eu2+ electron
spin resonance (ESR), performed in both X-band (9.4 GHz) and Q-band (34 GHz)
frequencies in the temperature interval 4.2 < T < 300 K. A comparative study
with ESR measurements on the Beta-Eu8Ga16Ge30 clathrate compound is presented.
Our results point to a correlation between the rattling motion and the spin
dynamics which may be relevant for the general understanding of the dynamics of
cage systems.Comment: 6 pages, 4 figures, accepted for publication in Phys. Rev.
A comparison of GC-FID and PTR-MS toluene measurements in ambient air under conditions of enhanced monoterpene loading
Toluene was measured using both a gas chromatographic system (GC), with a flame ionization detector (FID), and a proton transfer reaction-mass spectrometer (PTR-MS) at the AIRMAP atmospheric monitoring station Thompson Farm (THF) in rural Durham, NH during the summer of 2004. Simultaneous measurements of monoterpenes, including alpha- and beta-pinene, camphene, Delta(3)-carene, and d-limonene, by GC-FID demonstrated large enhancements in monoterpene mixing ratios relative to toluene, with median and maximum enhancement ratios of similar to 2 and similar to 30, respectively. A detailed comparison between the GC-FID and PTR-MS toluene measurements was conducted to test the specificity of PTR-MS for atmospheric toluene measurements under conditions often dominated by biogenic emissions. We derived quantitative estimates of potential interferences in the PTR-MS toluene measurements related to sampling and analysis of monoterpenes, including fragmentation of the monoterpenes and some of their primary carbonyl oxidation products via reactions with H(3)O(+), O(2)(+) and NO(+) in the PTR-MS drift tube. The PTR-MS and GC-FID toluene measurements were in good quantitative agreement and the two systems tracked one another well from the instrumental limits of detection to maximum mixing ratios of similar to 0.5 ppbv. A correlation plot of the PTR-MS versus GC-FID toluene measurements was described by the least squares regression equation y=(1.13 +/- 0.02)x-(0.008 +/- 0.003) ppbv, suggesting a small similar to 13% positive bias in the PTR-MS measurements. The bias corresponded with a similar to 0.055 ppbv difference at the highest measured toluene level. The two systems agreed quantitatively within the combined 1 sigma measurement precisions for 60% of the measurements. Discrepancies in the measured mixing ratios were not well correlated with enhancements in the monoterpenes. Better quantitative agreement between the two systems was obtained by correcting the PTR-MS measurements for contributions from monoterpene fragmentation in the PTR-MS drift tube; however, the improvement was minor (\u3c10%). Interferences in the PTRMS measurements from fragmentation of the monoterpene oxidation products pinonaldehyde, caronaldehyde and alpha-pinene oxide were also likely negligible. A relatively large and variable toluene background in the PTR-MS instrument likely drove the measurement bias; however, the precise contribution was difficult to accurately quantify and thus was not corrected for in this analysis. The results from THF suggest that toluene can be reliably quantified by PTR-MS using our operating conditions (drift tube pressure, temperature and voltage of 2.0 mbar, 45 degrees C and 600V, respectively) under the ambient compositions probed. This work extends the range of field conditions under which PTR-MS validation studies have been conducted
Radiocesium concentrations in the lichen-reindeer/caribou food chain: Before and after Chernobyl
This paper reviews historical concentrations of radiocesium (Cs-137) in the reindeer/caribou food chain in Alaska. These data, along with available kinetic models which describe the movement of radiocesium through the food chain, are used to predict consequences of radioactive fallout from the Chernobyl accident which occurred in late April 1986. During the present discussion, efforts are made to directly relate the Alaskan data to the Scandinavian situation as it exists following the Chernobyl accident
- …