2,121 research outputs found

    A Contracting, Turbulent, Starless Core in the Serpens Cluster

    Get PDF
    We present combined single-dish and interferometric CS(2--1) and N2H+(1--0) observations of a compact core in the NW region of the Serpens molecular cloud. The core is starless according to observations from optical to millimeter wavelengths and its lines have turbulent widths and ``infall asymmetry''. Line profile modeling indicates supersonic inward motions v_in>0.34 km/s over an extended region L>12000AU. The high infall speed and large extent exceeds the predictions of most thermal ambipolar diffusion models and points to a more dynamical process for core formation. A short (dynamic) timescale, ~1e5 yr=L/v_in, is also suggested by the low N2H+ abundance ~1e-10.Comment: 11 pages including 2 figures. Accepted for publication in the Astrophysical Journal Letter

    Breeding for improved nitrogen use efficiency in oilseed rape

    Get PDF
    Oilseed rape has a high requirement for nitrogen (N) fertiliser relative to its seed yield. This paper uses published and unpublished work to explore the extent to which the N use efficiency (seed yield ÷ N supply) of oilseed rape could be improved without reducing seed yield. It was estimated that if the concentration of N in the stem and pod wall at crop maturity could be reduced from 1.0 to 0.6%, the root length density increased to 1 cm/cm3 to 100 cm soil depth and the post flowering N uptake increased by 20 kg N/ha then the fertiliser requirement could be reduced from 191 to 142 kg N/ha and the N use efficiency could be increased from 15.2 to 22.4 kg of seed dry matter per kg N. Genetic variation was found for all of the traits that were estimated to be important for N use efficiency. This indicates that there is significant scope for plant breeders to reduce N use efficiency in oilseed rape

    Engineering soil organic matter quality: Biodiesel Co-Product (BCP) stimulates exudation of nitrogenous microbial biopolymers

    Get PDF
    Biodiesel Co-Product (BCP) is a complex organic material formed during the transesterification of lipids. We investigated the effect of BCP on the extracellular microbial matrix or ‘extracellular polymeric substance’ (EPS) in soil which is suspected to be a highly influential fraction of soil organic matter (SOM). It was hypothesised that more N would be transferred to EPS in soil given BCP compared to soil given glycerol. An arable soil was amended with BCP produced from either 1) waste vegetable oils or 2) pure oilseed rape oil, and compared with soil amended with 99% pure glycerol; all were provided with 15N labelled KNO3. We compared transfer of microbially assimilated 15N into the extracellular amino acid pool, and measured concomitant production of exopolysaccharide. Following incubation, the 15N enrichment of total hydrolysable amino acids (THAAs) indicated that intracellular anabolic products had incorporated the labelled N primarily as glutamine and glutamate. A greater proportion of the amino acids in EPS were found to contain 15N than those in the THAA pool, indicating that the increase in EPS was comprised of bioproducts synthesised de novo. Moreover, BCP had increased the EPS production efficiency of the soil microbial community (μg EPS per unit ATP) up to approximately double that of glycerol, and caused transfer of 21% more 15N from soil solution into EPS-amino acids. Given the suspected value of EPS in agricultural soils, the use of BCP to stimulate exudation is an interesting tool to consider in the theme of delivering sustainable intensification

    Optimised processing of faba bean (<i>Vicia faba L.</i>) kernels as a brewing adjunct

    Get PDF
    Pulse (Fabaceae) grains, such as peas and beans, are derived from crops that are usually cultivated in the absence of mineral nitrogen fertiliser as these crops can obtain their nitrogen requirement naturally from the air via biological nitrogen fixation. Therefore, pulses present a significantly lower greenhouse gas (GHG) footprint than crops demanding nitrogen fertiliser, whilst also offering significant quantities of starch for the brewing and distilling industries. Mitigation of agriculture derived GHG emissions through utilisation of pulses can have a positive environmental impact. To this end, the potential of exploiting dry, dehulled faba bean (Vicia faba L.) kernel flour as an adjunct for beer production was evaluated. The impact of different temperature regimes and commercial enzymes were assessed for their effect on wort: viscosity; run-off rate; primary amino nitrogen content and, fermentability. Faba beans demonstrated insufficient endogenous enzyme capacity for starch conversion and generated a viscous wort. However, using a stepped temperature mashing regime and exogenous enzyme additions, the faba bean wort was comparable in processability and fermentability to that of 100% malted barley wort. The faba based beer and co-product qualities demonstrate the environmental, nutritional and commercial potential of pulses in brewing.</p

    Digital Fingerprinting of Microstructures

    Full text link
    Finding efficient means of fingerprinting microstructural information is a critical step towards harnessing data-centric machine learning approaches. A statistical framework is systematically developed for compressed characterisation of a population of images, which includes some classical computer vision methods as special cases. The focus is on materials microstructure. The ultimate purpose is to rapidly fingerprint sample images in the context of various high-throughput design/make/test scenarios. This includes, but is not limited to, quantification of the disparity between microstructures for quality control, classifying microstructures, predicting materials properties from image data and identifying potential processing routes to engineer new materials with specific properties. Here, we consider microstructure classification and utilise the resulting features over a range of related machine learning tasks, namely supervised, semi-supervised, and unsupervised learning. The approach is applied to two distinct datasets to illustrate various aspects and some recommendations are made based on the findings. In particular, methods that leverage transfer learning with convolutional neural networks (CNNs), pretrained on the ImageNet dataset, are generally shown to outperform other methods. Additionally, dimensionality reduction of these CNN-based fingerprints is shown to have negligible impact on classification accuracy for the supervised learning approaches considered. In situations where there is a large dataset with only a handful of images labelled, graph-based label propagation to unlabelled data is shown to be favourable over discarding unlabelled data and performing supervised learning. In particular, label propagation by Poisson learning is shown to be highly effective at low label rates

    Utilization of low nitrogen barley for production of distilling quality malt

    Get PDF
    The potential to utilize low nitrogen barley for production of distilling quality malt was studied. This presents an opportunity to reduce the environmental impact of nitrogen fertilizer applications. Malting barley (cv. Octavia) was grown without the application of inorganic nitrogen fertilizer, to produce grain with a relatively low nitrogen concentration (1.16%, dry weight basis). Following micro-malting trials, dextrinizing units (58 DU) obtained from low nitrogen malt were much higher than a typical specification of 45 DU for malt with a conventional nitrogen concentration (&lt;1.5%). A higher soluble nitrogen ratio (SNR) or index of modification (IoM) of 49 indicated greater modification of the low nitrogen barley, resulting in higher extract released into the wort. Additionally, much lower levels of β-glucan were found in low nitrogen malt wort (64 mg/L compared with over 100 mg/L in wort of conventional nitrogen malt). Low nitrogen malt also produced higher predicted spirit yields following wort fermentation and wash distillation. These findings indicate that lower nitrogen concentration barley can be processed without negatively impacting malt quality for distilling applications. The implication of these findings to help realize more environmentally sustainable production of barley for malting and use in distilling is discussed.</p
    corecore