4,218 research outputs found

    Theoretical Estimates of Intrinsic Galaxy Alignment

    Get PDF
    It has recently been argued that the observed ellipticities of galaxies may be determined at least in part by the primordial tidal gravitational field in which the galaxy formed. Long-range correlations in the tidal field could thus lead to an ellipticity-ellipticity correlation for widely separated galaxies. We present a new model relating ellipticity to angular momentum, which can be calculated in linear theory. We use this model to calculate the angular power spectrum of intrinsic galaxy shape correlations. We show that for low redshift galaxy surveys, our model predicts that intrinsic correlations will dominate correlations induced by weak lensing, in good agreement with previous theoretical work and observations. We find that our model produces `E-mode' correlations enhanced by a factor of 3.5 over B-modes on small scales, making it harder to disentangle intrinsic correlations from those induced by weak gravitational lensing.Comment: 14 pages, 2 figures, MNRAS in press. Error corrected in lensing calculation; revised versio

    Notes on the frugivorous fruit fly (Diptera: Tephritidae) fauna of western Africa, with description of a new Dacus species

    Get PDF
    The species richness of the frugivorous fruit fly fauna of western African (in particular of Ivory Coast, Ghana, Togo, Benin and Nigeria) is discussed. The diversity is compared at a national level and between the ecoregions within the national boundaries of the study area. A new species, Dacus goergeni sp. nov. is described and additional taxonomic notes are presented

    The Politically Engaged Society, the State, Policy, Comparison

    Get PDF
    Summaries Gordon White's contributions to the study of China fall under at least four major rubrics. Most important was his analysis of political engagement by a breathtaking range of social classes and groups in both the Maoist and Dengist periods. Second, he appreciated the role of the state analytically in shaping society's political engagement, and normatively because he thought it had essential social and economic responsibilities. Third, he hoped to influence policy indirectly, by providing cautionaries for policy?makers and by writing for and collaborating with social scientists in other countries, especially China. Fourth, he placed China squarely in comparative contexts, first of revolutionary socialist states, and then of East Asian developmental states

    Multi-epoch Sub-arcsecond [Fe II] Spectroimaging of the DG Tau Outflows with NIFS. II. On the Nature of the Bipolar Outflow Asymmetry

    Get PDF
    The origin of bipolar outflow asymmetry in young stellar objects (YSOs) remains poorly understood. It may be due to an intrinsically asymmetric outflow launch mechanism, or it may be caused by the effects of the ambient medium surrounding the YSO. Answering this question is an important step in understanding outflow launching. We have investigated the bipolar outflows driven by the T Tauri star DG Tauri on scales of hundreds of AU, using the Near-infrared Integral Field Spectrograph (NIFS) on Gemini North. The approaching outflow consists of a well-collimated jet, nested within a lower-velocity disc wind. The receding outflow is composed of a single-component bubble-like structure. We analyse the kinemat- ics of the receding outflow using kinetic models, and determine that it is a quasi-stationary bubble with an expanding internal velocity field. We propose that this bubble forms because the receding counterjet from DG Tau is obstructed by a clumpy ambient medium above the circumstellar disc surface, based on similarities between this structure and those found in the modeling of active galactic nuclei outflows. We find evidence of interaction between the obscured counterjet and clumpy ambient material, which we attribute to the large molecular envelope around the DG Tau system. An analytical model of a momentum-driven bubble is shown to be consistent with our interpretation. We conclude that the bipolar outflow from DG Tau is intrinsically symmetric, and the observed asymmetries are due to environmental effects. This mechanism can potentially be used to explain the observed bipolar asymmetries in other YSO outflows.Comment: 16 pages, 10 figures, accepted for publication in MNRA

    Particle Astrophysics and Cosmology: Cosmic Laboratories for New Physics (Summary of the Snowmass 2001 P4 Working Group)

    Full text link
    The past few years have seen dramatic breakthroughs and spectacular and puzzling discoveries in astrophysics and cosmology. In many cases, the new observations can only be explained with the introduction of new fundamental physics. Here we summarize some of these recent advances. We then describe several problem in astrophysics and cosmology, ripe for major advances, whose resolution will likely require new physics.Comment: 27 pages, 14 figure

    Turbulent mixing layers in supersonic protostellar outflows, with application to DG Tauri

    Get PDF
    Turbulent entrainment processes may play an important role in the outflows from young stellar objects at all stages of their evolution. In particular, lateral entrainment of ambient material by high-velocity, well-collimated protostellar jets may be the cause of the multiple emission-line velocity components observed in the microjet-scale outflows driven by classical T Tauri stars. Intermediate-velocity outflow components may be emitted by a turbulent, shock- excited mixing layer along the boundaries of the jet. We present a formalism for describing such a mixing layer based on Reynolds decomposition of quantities measuring fundamental properties of the gas. In this model, the molecular wind from large disc radii provides a continual supply of material for entrainment. We calculate the total stress profile in the mixing layer, which allows us to estimate the dissipation of turbulent energy, and hence the luminosity of the layer. We utilize MAPPINGS IV shock models to determine the fraction of total emission that occurs in [Fe II] 1.644 {\mu}m line emission in order to facilitate comparison to previous observations of the young stellar object DG Tauri. Our model accurately estimates the luminosity and changes in mass outflow rate of the intermediate-velocity component of the DG Tau approaching outflow. Therefore, we propose that this component represents a turbulent mixing layer surrounding the well-collimated jet in this object. Finally, we compare and contrast our model to previous work in the field.Comment: 18 pages, 13 figures, accepted for publication in MNRA
    corecore