22 research outputs found

    In vitro and in vivo characterization of potent antileishmanial methionine aminopeptidase 1 inhibitors

    Get PDF
    Leishmania major is the causative agent of cutaneous leishmaniasis (CL). No human vaccine is available for CL, and current drug regimens present several drawbacks, such as emerging resistance, severe toxicity, medium effectiveness, and/or high cost. Thus, the need for better treatment options against CL is a priority. In the present study, we validate the enzyme methionine aminopeptidase 1 of L. major (MetAP1Lm), a metalloprotease that catalyzes the removal of N-terminal methionine from peptides and proteins, as a chemotherapeutic target against CL infection. The in vitro antileishmanial activities of eight novel MetAP1 inhibitors (OJT001 to OJT008) were investigated. Three compounds, OJT006, OJT007, and OJT008, demonstrated potent antiproliferative effects in macrophages infected with L. major amastigotes and promastigotes at submicromolar concentrations, with no cytotoxicity against host cells. Importantly, the leishmanicidal effect in transgenic L. major promastigotes overexpressing MetAP1Lm was diminished by almost 10-fold in comparison to the effect in wild-type promastigotes. Furthermore, the in vivo activities of OJT006, OJT007, and OJT008 were investigated in L. major-infected BALB/c mice. In comparison to the footpad parasite load in the control group, OJT008 decreased the footpad parasite load significantly, by 86%, and exhibited no toxicity in treated mice. We propose MetAP1 inhibitor OJT008 as a potential chemotherapeutic candidate against CL infection caused by L. major infection

    Results of a randomized, double blind, placebo controlled, crossover trial of melatonin for treatment of Nocturia in adults with multiple sclerosis (MeNiMS)

    Get PDF
    © 2018 The Author(s). Background: Nocturia is a common urinary symptom of multiple sclerosis (MS) which can affect quality of life (QoL) adversely. Melatonin is a hormone known to regulate circadian rhythm and reduce smooth muscle activity such as in the bladder. There is limited evidence supporting use of melatonin to alleviate urinary frequency at night in the treatment of nocturia. The aim of this study was to evaluate the effect of melatonin on the mean number of nocturia episodes per night in patients with MS. Methods: A randomized, double blind, placebo controlled crossover trial was conducted. 34 patients with nocturia secondary to multiple sclerosis underwent a 4-day pre-treatment monitoring phase. The patients were randomized to receive either 2 mg per night (taken at bedtime) of capsulated sustained-release melatonin (Circadin®) or 1 placebo capsule for 6 weeks followed by a crossover to the other regimen for an additional 6 weeks after a 1-month washout period. Results: From the 26 patients who completed the study, there was no significant difference observed in the signs or symptoms of nocturia when taking 2 mg melatonin compared to placebo. The primary outcome measure, mean number of nocturia episodes on bladder diaries, was 1.8/night at baseline, and 1.4/night on melatonin, compared with 1.6 for placebo (Medians 1.70, 1.50, and 1.30 respectively, p = 0.85). There was also no significant difference seen in LUTS, QoL and sleep quality when taking melatonin. No significant safety concerns arose. Conclusions: This small study suggests that a low dose of melatonin taken at bedtime may be ineffective therapy for nocturia in MS. Trial registration: (EudraCT reference) 2012-00418321 registered: 25/01/13. ISRCTN Registry: ISRCTN38687869

    Evaluation of the feasibility, diagnostic yield, and clinical utility of rapid genome sequencing in infantile epilepsy (Gene-STEPS): an international, multicentre, pilot cohort study

    Get PDF
    BACKGROUND: Most neonatal and infantile-onset epilepsies have presumed genetic aetiologies, and early genetic diagnoses have the potential to inform clinical management and improve outcomes. We therefore aimed to determine the feasibility, diagnostic yield, and clinical utility of rapid genome sequencing in this population. METHODS: We conducted an international, multicentre, cohort study (Gene-STEPS), which is a pilot study of the International Precision Child Health Partnership (IPCHiP). IPCHiP is a consortium of four paediatric centres with tertiary-level subspecialty services in Australia, Canada, the UK, and the USA. We recruited infants with new-onset epilepsy or complex febrile seizures from IPCHiP centres, who were younger than 12 months at seizure onset. We excluded infants with simple febrile seizures, acute provoked seizures, known acquired cause, or known genetic cause. Blood samples were collected from probands and available biological parents. Clinical data were collected from medical records, treating clinicians, and parents. Trio genome sequencing was done when both parents were available, and duo or singleton genome sequencing was done when one or neither parent was available. Site-specific protocols were used for DNA extraction and library preparation. Rapid genome sequencing and analysis was done at clinically accredited laboratories, and results were returned to families. We analysed summary statistics for cohort demographic and clinical characteristics and the timing, diagnostic yield, and clinical impact of rapid genome sequencing. FINDINGS: Between Sept 1, 2021, and Aug 31, 2022, we enrolled 100 infants with new-onset epilepsy, of whom 41 (41%) were girls and 59 (59%) were boys. Median age of seizure onset was 128 days (IQR 46-192). For 43 (43% [binomial distribution 95% CI 33-53]) of 100 infants, we identified genetic diagnoses, with a median time from seizure onset to rapid genome sequencing result of 37 days (IQR 25-59). Genetic diagnosis was associated with neonatal seizure onset versus infantile seizure onset (14 [74%] of 19 vs 29 [36%] of 81; p=0·0027), referral setting (12 [71%] of 17 for intensive care, 19 [44%] of 43 non-intensive care inpatient, and 12 [28%] of 40 outpatient; p=0·0178), and epilepsy syndrome (13 [87%] of 15 for self-limited epilepsies, 18 [35%] of 51 for developmental and epileptic encephalopathies, 12 [35%] of 34 for other syndromes; p=0·001). Rapid genome sequencing revealed genetic heterogeneity, with 34 unique genes or genomic regions implicated. Genetic diagnoses had immediate clinical utility, informing treatment (24 [56%] of 43), additional evaluation (28 [65%]), prognosis (37 [86%]), and recurrence risk counselling (all cases). INTERPRETATION: Our findings support the feasibility of implementation of rapid genome sequencing in the clinical care of infants with new-onset epilepsy. Longitudinal follow-up is needed to further assess the role of rapid genetic diagnosis in improving clinical, quality-of-life, and economic outcomes. FUNDING: American Academy of Pediatrics, Boston Children's Hospital Children's Rare Disease Cohorts Initiative, Canadian Institutes of Health Research, Epilepsy Canada, Feiga Bresver Academic Foundation, Great Ormond Street Hospital Charity, Medical Research Council, Murdoch Children's Research Institute, National Institute of Child Health and Human Development, National Institute for Health and Care Research Great Ormond Street Hospital Biomedical Research Centre, One8 Foundation, Ontario Brain Institute, Robinson Family Initiative for Transformational Research, The Royal Children's Hospital Foundation, University of Toronto McLaughlin Centre

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Simultaneous determination and validation of oncrasin-266 and its metabolites by HPLC–MS/MS: Application to a pharmacokinetic study

    No full text
    Oncrasins are a class of RNA polymerase II inhibitors. Oncrasin-72 is an indole-3 carbinol analog that has shown to inhibit growth and induce the cell death of various human cancer cell lines. Oncrasin-266, a prodrug of oncrasin-72, has been shown to have improved pharmacokinetic properties and safety than Oncrasin-72. With respect to the potential therapeutic advantages of this class of compounds, there is a need for further preclinical assessment for future clinical trials. The development of and validation of an analytical method is essential for the quantification of oncrasins in biological fluids for pharmacokinetic studies. This study focuses on the HPLC–MS/MS method development and validation of oncrasin-266, oncrasin-72 and its aldehyde metabolite in rat plasma. Blank rat plasma, coupled with 1-(3-chlorobenzyl)-1H-indole, as internal standard, was used for generating standard curves ranging from 1 to 250 ng/mL for oncrasin-266 and oncrasin-72; and 0.5–125 ng/mL for the aldehyde metabolite. The chromatographic separation was achieved by a Zorbax 300SB-C18 HPLC column at 50°C with a flow rate of 1.1 mL/min under gradient elution. Mass detection was performed under positive ionization electrospray. Intra- and inter-day accuracy and precision of the assay were less than 10%. We report a simple, specific and reproducible HPLC–MS/MS method for the quantification of oncrasins in rat plasma. This study was successfully used for the quantification of oncrasins in rat plasma for pharmacokinetic studies in three dose groups of 10, 25, and 50 mg/kg via intravenous administration

    LC–MS/MS determination of D-mannose in human serum as a potential cancer biomarker

    No full text
    Several metabolites in human serum have been identified as potential cancer biomarkers for early detection. This study focuses on the LC–MS/MS method development and validation of D-mannose in human serum. Surrogate blank serum, coupled with stable isotope D-mannose-13C6, as internal standard, was used for generating standard curves ranging from 1 to 50 μg/mL. Separation was achieved by an Agilent 1200 series HPLC equipped with a SUPELCOGELTM Pb, 6% Crosslinked column with HPLC water as a mobile phase at flow rate of 0.5 mL/min at 80 °C. Mass detection was performed under negative ionization electrospray. Inter- and intra-day accuracy and precision were \u3c2%. The extraction recovery and matrix effect were 104.1%–105.5% and 97.0%–100.0%, respectively. This method was successfully applied for the quantification of D-mannose in the serum samples of 320 esophageal cancer patients and 323 healthy volunteers. We report a simple, specific and reproducible LC–MS/MS method for the quantification of D-mannose in human serum as a potential cancer biomarker
    corecore