2,462 research outputs found

    Some physiological effects of excess soil moisture on Stayman Winesap apple trees

    Get PDF

    Detection of the Entropy of the Intergalactic Medium: Accretion Shocks in Clusters, Adiabatic Cores in Groups

    Full text link
    The thermodynamics of the diffuse, X-ray emitting gas in clusters of galaxies is linked to the entropy level of the intra cluster medium. In particular, models that successfully reproduce the properties of local X-ray clusters and groups require the presence of a minimum value for the entropy in the center of X-ray halos. Such a minimum entropy is most likely generated by non-gravitational processes, in order to produce the observed break in self-similarity of the scaling relations of X-ray halos. At present there is no consensus on the level, the source or the time evolution of this excess entropy. In this paper we describe a strategy to investigate the physics of the heating processes acting in groups and clusters. We show that the best way to extract information from the local data is the observation of the entropy profile at large radii in nearby X-ray halos (z~0.1), both at the upper and lower extremes of the cluster mass scale. The spatially and spectrally resolved observation of such X-ray halos provides information on the mechanism of the heating. We demonstrate how measurements of the size of constant entropy (adiabatic) cores in clusters and groups can directly constrain heating models, and the minimum entropy value. We also consider two specific experiments: the detection of the shock fronts expected at the virial boundary of rich clusters, and the detection of the isentropic, low surface-brightness emission extending to radii larger than the virial ones in low mass clusters and groups. Such observations will be a crucial probe of both the physics of clusters and the relationship of non-gravitational processes to the thermodynamics of the intergalactic medium.Comment: ApJ accepted, 31 pages including 8 figures. Important material added; references update

    Angle-resolved photoemission in high Tc cuprates from theoretical viewpoints

    Full text link
    The angle-resolved photoemission (ARPES) technique has been developed rapidly over the last decay, accompanied by the improvement of energy and momentum resolutions. This technique has been established as the most powerful tool to investigate the high Tc cuprate superconductors. We review recent ARPES data on the cuprates from a theoretical point of view, with emphasis on the systematic evolution of the spectral weight near the momentum (pi,0) from insulator to overdoped systems. The effects of charge stripes on the ARPES spectra are also reviewed. Some recent experimental and theoretical efforts to understand the superconducting state and the pseudogap phenomenon are discussed.Comment: Review, 25 pages, with 22 GIF figures. To appear in Supercond. Sci. Technol. Vol. 13 April 2000. A version including PS figures can be found at http://www.maekawa-lab.imr.tohoku.ac.jp/TOHYAMA/tohyama.ps.g

    Giant Molecular Outflows Powered by Protostars in L1448

    Get PDF
    We present sensitive, large-scale maps of the CO J=1-0 emission of the L1448 dark cloud. These maps were acquired using the On-The-Fly capability of the NRAO 12-meter telescope. CO outflow activity is seen in L1448 on parsec-scales for the first time. Careful comparison of the spatial and velocity distribution of our high-velocity CO maps with previously published optical and near-infrared images and spectra has led to the identification of six distinct CO outflows. We show the direct link between the heretofore unknown, giant, highly-collimated, protostellar molecular outflows and their previously discovered, distant optical manifestations. The outflows traced by our CO mapping generally reach the projected cloud boundaries. Integrated intensity maps over narrow velocity intervals indicate there is significant overlap of blue- and red-shifted gas, suggesting the outflows are highly inclined with respect to the line-of-sight, although the individual outflow position angles are significantly different. The velocity channel maps also show that the outflows dominate the CO line cores as well as the high-velocity wings. The magnitude of the combined flow momenta, as well as the combined kinetic energy of the flows, are sufficient to disperse the 50 solar mass NH3 cores in which the protostars are currently forming, although some question remains as to the exact processes involved in redirecting the directionality of the outflow momenta to effect the complete dispersal of the parent cloud.Comment: 11 pages, 9 figures, to be published in the Astronomical Journa

    Cosmological Constraints from the ROSAT Deep Cluster Survey

    Get PDF
    The ROSAT Deep Cluster Survey (RDCS) has provided a new large deep sample of X-ray selected galaxy clusters. Observables such as the flux number counts n(S), the redshift distribution n(z) and the X-ray luminosity function (XLF) over a large redshift baseline (z\lesssim 0.8) are used here in order to constrain cosmological models. Our analysis is based on the Press-Schechter approach, whose reliability is tested against N-body simulations. Following a phenomenological approach, no assumption is made a priori on the relation between cluster masses and observed X-ray luminosities. As a first step, we use the local XLF from RDCS, along with the high-luminosity extension provided by the XLF from the BCS, in order to constrain the amplitude of the power spectrum, \sigma_8, and the shape of the local luminosity-temperature relation. We obtain \sigma_8=0.58 +/- 0.06 for Omega_0=1 for open models at 90% confidence level, almost independent of the L-T shape. The density parameter \Omega_0 and the evolution of the L-T relation are constrained by the RDCS XLF at z>0 and the EMSS XLF at z=0.33, and by the RDCS n(S) and n(z) distributions. By modelling the evolution for the amplitude of the L-T relation as (1+z)^A, an \Omega_0=1 model can be accommodated for the evolution of the XLF with 1<A<3 at 90% confidence level, while \Omega_0=0.4^{+0.3}_{-0.2} and \Omega_0<0.6 are implied by a non--evolving L-T for open and flat models, respectively.Comment: 12 pages, 9 colour figures, LateX, uses apj.sty, ApJ, in press, May 20 issu

    The Evolution of X-ray Clusters and the Entropy of the Intra Cluster Medium

    Full text link
    The thermodynamics of the diffuse, X-ray emitting gas in clusters of galaxies is determined by gravitational processes associated with shock heating, adiabatic compression, and non-gravitational processes such as heating by SNe, stellar winds, activity in the central galactic nucleus, and radiative cooling. The effect of gravitational processes on the thermodynamics of the Intra Cluster Medium (ICM) can be expressed in terms of the ICM entropy S ~ ln(T/\rho^{2/3}). We use a generalized spherical model to compute the X-ray properties of groups and clusters for a range of initial entropy levels in the ICM and for a range of mass scales, cosmic epochs and background cosmologies. We find that the statistical properties of the X-ray clusters strongly depend on the value of the initial excess entropy. Assuming a constant, uniform value for the excess entropy, the present-day X-ray data are well fitted for the following range of values K_* = kT/\mu m_p \rho^{2/3} = (0.4\pm 0.1) \times 10^{34} erg cm^2 g^{-5/3} for clusters with average temperatures kT>2 keV; K_* = (0.2\pm 0.1) \times 10^{34} erg cm^2 g^{-5/3} for groups and clusters with average temperatures kT<2 keV. These values correspond to different excess energy per particle of kT \geq 0.1 (K_*/0.4\times 10^{34}) keV. The dependence of K_* on the mass scale can be well reproduced by an epoch dependent external entropy: the relation K_* = 0.8(1+z)^{-1}\times 10^{34} erg cm^2 g^{-5/3} fits the data over the whole temperature range. Observations of both local and distant clusters can be used to trace the distribution and the evolution of the entropy in the cosmic baryons, and ultimately to unveil the typical epoch and the source of the heating processes.Comment: 53 pages, LateX, 19 figures, ApJ in press, relevant comments and references adde

    Dendritic Surfactants Show Evidence for Frustrated Intercalation: A New Organoclay Morphology

    Get PDF
    Mixing a smectite clay with some dendritic surfactants shows that despite the large size of some of these molecules, a property that frustrates complete intercalation into the gallery of the clay, organoclay materials are obtained. X-ray powder diffraction (XPD) reveals no significant increases in lattice spacing as these surfactants are added. Infrared (IR) spectroscopy and thermal gravimetric analysis (TGA) show that interlayer water is preserved. Consistent with an undisturbed interlayer, the amount of organic material in organoclays derived from frustrated surfactants does not exceed 15% of the cationic exchange capacity (CEC) of the composite. Smaller dendritic surfactants do not display frustrated intercalation and instead readily enter into the gallery of the smectic clay yielding traditional organoclay materials. A range of organic compositions (5-50% w/w) that exceed the CEC of the materials are observed. The organic content is corroborated by UV spectroscopy and TGA. XPD reveals increasing lattice spacings with increasing organic content. IR spectroscopy and TGA support an increasingly hydrophobic interlayer. A linear isomer of a frustrated surfactant can intercalate into the gallery (5-33% w/w) yielding morphologies that depend on the amount of surfactant added. These results support the hypothesis that shape, and not only size, is important for producing frustrated intercalation

    Truncation of a 2-dimensional Fermi surface due to quasiparticle gap formation at the saddle points

    Full text link
    We study a two-dimensional Fermi liquid with a Fermi surface containing the saddle points (Ď€,0)(\pi,0) and (0,Ď€)(0,\pi). Including Cooper and Peierls channel contributions leads to a one-loop renormalization group flow to strong coupling for short range repulsive interactions. In a certain parameter range the characteristics of the fixed point, opening of a spin and charge gap and dominant pairing correlations are similar to those of a 2-leg ladder at half-filling. An increase of the electron density we argue leads to a truncation of the Fermi surface with only 4 disconnected arcs remaining.Comment: Reference added. RevTeX 4 pages incl. 4 ps file
    • …
    corecore