3,240 research outputs found

    Employer engagement within 14-19 diploma development

    Get PDF
    In 2005, the UK government announced the development of a suite of employer-designed diplomas for 14-19 year olds linked to different industrial and commercial sectors. This article will reflect on some of the achievements and challenges of this major employer engagement initiative by drawing on three pieces of research: a review of Diploma development and two employer consultation studies belonging to the latest phase of Diploma development - the Diplomas in Humanities and Social Sciences and Languages and International Communications. The article suggests that meeting the needs of employers in qualification design is problematic as employers are a heterogeneous group bringing a range of different views, ideas and contributions to the process. Furthermore, the article points to a possible mismatch between policymakers' expectations from employers at the macro level, and what in fact happens at the local, micro level owing to personal and economic circumstances, companies' demands and the economic climate

    Detecting Viral Genomes in the Female Urinary Microbiome

    Get PDF
    Viruses are the most abundant component of the human microbiota. Recent evidence has uncovered a rich diversity of viruses within the female bladder, including both bacteriophages and eukaryotic viruses. We conducted whole-genome sequencing of the bladder microbiome of 30 women: 10 asymptomatic ‘healthy’ women and 20 women with an overactive bladder. These metagenomes include sequences representative of human, bacterial and viral DNA. This analysis, however, focused specifically on viral sequences. Using the bioinformatic tool virMine, we discovered sequence fragments, as well as complete genomes, of bacteriophages and the eukaryotic virus JC polyomavirus. The method employed here is a critical proof of concept: the genomes of viral populations within the low-biomass bladder microbiota can be reconstructed through whole-genome sequencing of the entire microbial community

    Comprehensive Analysis of Copy Number Variation of Genes at Chromosome 1 and 10 Loci Associated with Late Age Related Macular Degeneration

    Get PDF
    Copy Number Variants (CNVs) are now recognized as playing a significant role in complex disease etiology. Age-related macular degeneration (AMD) is the most common cause of irreversible vision loss in the western world. While a number of genes and environmental factors have been associated with both risk and protection in AMD, the role of CNVs has remained largely unexplored. We analyzed the two major AMD risk-associated regions on chromosome 1q32 and 10q26 for CNVs using Multiplex Ligation-dependant Probe Amplification. The analysis targeted nine genes in these two key regions, including the Complement Factor H (CFH) gene, the 5 CFH-related (CFHR) genes representing a known copy number “hotspot”, the F13B gene as well as the ARMS2 and HTRA1 genes in 387 cases of late AMD and 327 controls. No copy number variation was detected at the ARMS2 and HTRA1 genes in the chromosome 10 region, nor for the CFH and F13B genes at the chromosome 1 region. However, significant association was identified for the CFHR3-1 deletion in AMD cases (p = 2.38×10−12) OR = 0.31, CI-0.95 (0.23–0.44), for both neovascular disease (nAMD) (p = 8.3×10−9) OR = 0.36 CI-0.95 (0.25–0.52) and geographic atrophy (GA) (p = 1.5×10−6) OR = 0.36 CI-0.95 (0.25–0.52) compared to controls. In addition, a significant association with deletion of CFHR1-4 was identified only in patients who presented with bilateral GA (p = 0.02) (OR = 7.6 CI-0.95 1.38–41.8). This is the first report of a phenotype specific association of a CNV for a major subtype of AMD and potentially allows for pre-diagnostic identification of individuals most likely to proceed to this end stage of disease

    Multi-objective improvement of software using co-evolution and smart seeding

    Get PDF
    Optimising non-functional properties of software is an important part of the implementation process. One such property is execution time, and compilers target a reduction in execution time using a variety of optimisation techniques. Compiler optimisation is not always able to produce semantically equivalent alternatives that improve execution times, even if such alternatives are known to exist. Often, this is due to the local nature of such optimisations. In this paper we present a novel framework for optimising existing software using a hybrid of evolutionary optimisation techniques. Given as input the implementation of a program or function, we use Genetic Programming to evolve a new semantically equivalent version, optimised to reduce execution time subject to a given probability distribution of inputs. We employ a co-evolved population of test cases to encourage the preservation of the program’s semantics, and exploit the original program through seeding of the population in order to focus the search. We carry out experiments to identify the important factors in maximising efficiency gains. Although in this work we have optimised execution time, other non-functional criteria could be optimised in a similar manner

    Assembling the thymus medulla:Development and function of epithelial cell heterogeneity

    Get PDF
    The thymus is a unique primary lymphoid organ that supports the production of self-tolerant T-cells essential for adaptive immunity. Intrathymic microenvironments are microanatomically compartmentalised, forming defined cortical, and medullary regions each differentially supporting critical aspects of thymus-dependent T-cell maturation. Importantly, the specific functional properties of thymic cortical and medullary compartments are defined by highly specialised thymic epithelial cells (TEC). For example, in the medulla heterogenous medullary TEC (mTEC) contribute to the enforcement of central tolerance by supporting deletion of autoreactive T-cell clones, thereby counterbalancing the potential for random T-cell receptor generation to contribute to autoimmune disease. Recent advances have further shed light on the pathways and mechanisms that control heterogeneous mTEC development and how differential mTEC functionality contributes to control self-tolerant T-cell development. Here we discuss recent findings in relation to mTEC development and highlight examples of how mTEC diversity contribute to thymus medulla function.</p

    Predicting the cosmological constant with the scale-factor cutoff measure

    Full text link
    It is well known that anthropic selection from a landscape with a flat prior distribution of cosmological constant Lambda gives a reasonable fit to observation. However, a realistic model of the multiverse has a physical volume that diverges with time, and the predicted distribution of Lambda depends on how the spacetime volume is regulated. We study a simple model of the multiverse with probabilities regulated by a scale-factor cutoff, and calculate the resulting distribution, considering both positive and negative values of Lambda. The results are in good agreement with observation. In particular, the scale-factor cutoff strongly suppresses the probability for values of Lambda that are more than about ten times the observed value. We also discuss several qualitative features of the scale-factor cutoff, including aspects of the distributions of the curvature parameter Omega and the primordial density contrast Q.Comment: 16 pages, 6 figures, 2 appendice
    corecore