2,017 research outputs found

    The poly ADP-ribose system in Triticum aestivus L.

    Get PDF

    The first total synthesis of (+)-mucosin

    No full text
    The first total synthesis of (+)-mucosin has been completed allowing assignment of the absolute stereochemistry of the natural product. A zirconium induced co-cyclisation was utilised to install the correct stereochemistry of the four contiguous stereocentres around the unusual bicyclo[4.3.0]nonene core

    Analytic Examples, Measurement Models and Classical Limit of Quantum Backflow

    Full text link
    We investigate the backflow effect in elementary quantum mechanics - the phenomenon in which a state consisting entirely of positive momenta may have negative current and the probability flows in the opposite direction to the momentum. We compute the current and flux for states consisting of superpositions of gaussian wave packets. These are experimentally realizable but the amount of backflow is small. Inspired by the numerical results of Penz et al (M.Penz, G.Gr\"ubl, S.Kreidl and P.Wagner, J.Phys. A39, 423 (2006)), we find two non-trivial wave functions whose current at any time may be computed analytically and which have periods of significant backflow, in one case with a backwards flux equal to about 70 percent of the maximum possible backflow, a dimensionless number cbm0.04c_{bm} \approx 0.04 , discovered by Bracken and Melloy (A.J.Bracken and G.F.Melloy, J.Phys. A27, 2197 (1994)). This number has the unusual property of being independent of \hbar (and also of all other parameters of the model), despite corresponding to an obviously quantum-mechanical effect, and we shed some light on this surprising property by considering the classical limit of backflow. We discuss some specific measurement models in which backflow may be identified in certain measurable probabilities.Comment: 33 pages, 14 figures. Minor revisions. Published versio

    Remembering baby

    Get PDF

    The Introduction of Bitcoin Futures: An Examination of Volatility and Potential Spillover Effects

    Get PDF
    Theory in Stein (1987) suggests that introducing derivative contracts, such as futures, can destabilize underlying asset prices if the contracts attract enough speculative traders. This paper examines how the introduction of Bitcoin futures influences the underlying Bitcoin market. Consistent with Stein (1987), we find that that Bitcoin\u27s volatility increases significantly during the post-introduction period. Perhaps more importantly, however, we observe significant spillover effects into related markets. For instance, in other cryptocurrencies, the increase in volatility in these markets is greater than the post-introduction increase in Bitcoin

    The Origin of Mercury

    Get PDF
    Mercury's unusually high mean density has always been attributed to special circumstances that occurred during the formation of the planet or shortly thereafter, and due to the planet's close proximity to the Sun. The nature of these special circumstances is still being debated and several scenarios, all proposed more than 20 years ago, have been suggested. In all scenarios, the high mean density is the result of severe fractionation occurring between silicates and iron. It is the origin of this fractionation that is at the centre of the debate: is it due to differences in condensation temperature and/or in material characteristics (e.g. density, strength)? Is it because of mantle evaporation due to the close proximity to the Sun? Or is it due to the blasting off of the mantle during a giant impact? In this paper we investigate, in some detail, the fractionation induced by a giant impact on a proto-Mercury having roughly chondritic elemental abundances. We have extended the previous work on this hypothesis in two significant directions. First, we have considerably increased the resolution of the simulation of the collision itself. Second, we have addressed the fate of the ejecta following the impact by computing the expected reaccretion timescale and comparing it to the removal timescale from gravitational interactions with other planets (essentially Venus) and the Poynting-Robertson effect. To compute the latter, we have determined the expected size distribution of the condensates formed during the cooling of the expanding vapor cloud generated by the impact. We find that, even though some ejected material will be reaccreted, the removal of the mantle of proto-Mercury following a giant impact can indeed lead to the required long-term fractionation between silicates and iron and therefore account for the anomalously high mean density of the planet. Detailed coupled dynamical-chemical modeling of this formation mechanism should be carried out in such a way as to allow explicit testing of the giant impact hypothesis by forthcoming space missions (e.g. MESSENGER and BepiColombo
    corecore