14 research outputs found

    1D nanomaterials 2013

    Get PDF
    This is the final version of the article. Available from Hindawi Publishing Corporation via the DOI in this record.No abstrac

    Breakdown into nanoscale of graphene oxide: Confined hot spot atomic reduction and fragmentation

    Get PDF
    Nano-graphene oxide (nano-GO) is a new class of carbon based materials being proposed for biomedical applications due to its small size, intrinsic optical properties, large specific surface area, and easy to functionalize. To fully exploit nano-GO properties, a reproducible method for its production is of utmost importance. Herein we report, the study of the sequential fracture of GO sheets onto nano-GO with controllable lateral width, by a simple, and reproducible method based on a mechanism that we describe as a confined hot spot atomic fragmentation/reduction of GO promoted by ultrasonication. The chemical and structural changes on GO structure during the breakage were monitored by XPS, FTIR, Raman and HRTEM. We found that GO sheets starts breaking from the defects region and in a second phase through the disruption of carbon bonds while still maintaining crystalline carbon domains. The breaking of GO is accompanied by its own reduction, essentially by the elimination of carboxylic and carbonyl functional groups. Photoluminescence and photothermal studies using this nano-GO are also presented highlighting the potential of this nanomaterial as a unique imaging/therapy platform

    Novel nanostructures: from metal-filled carbon nanotubes to MgO nanoferns

    No full text
    Recently, numerous advances have been achieved by the fullerene/nanotube team at Sussex. Formerly, arc discharge techniques provided a unique method for generating fullerenes and carbon nanotubes. However, the yields and dimensional uniformity of these materials were not controllable. We have made significant advances in this area by pyrolysis of selected organic precursors in order to generate: (a) aligned nanotube bundles of uniform length and diameter; (b) metal nanowires using benzene-based aerosols in conjunction with metallocenes; (c) CNx nanostructures. High-temperature methods have also been employed to produce (d) fern-like MgO nanostructures using MgO and Co mixtures. Finally, these novel materials are predicted to exhibit extraordinary physical and chemical properties and may thus prove useful, i.e. in the manufacture of (superstrong) composite materials and novel electronic or optical devices (e.g. field emission sources, ultra-thin TV displays, etc.)
    corecore