584 research outputs found

    An investigation into the sample preparation procedure and analysis of cyanoacrylate adhesives using capillary electrophoresis

    Get PDF
    In this study, the trace acid profile of cyanoacrylate adhesives was studied using capillary electrophoresis. Liquid–liquid extraction was employed as the sample preparation step before separation by capillary electrophoresis. The solubility of the adhesives was investigated using various organic solvents, e.g. hexane and dichloromethane, and chloroform was determined to be the optimum solvent as it enabled the full dissolution of the adhesive. A comprehensive stability study was performed over a 3-year period and results indicate that the adhesives were stable for 2 years after which their stability and performance degraded

    Oral Bisphosphonates and Risk of Atrial Fibrillation and Flutter in Women: A Self-Controlled Case-Series Safety Analysis

    Get PDF
    Background: A recent trial unexpectedly reported that atrial fibrillation, when defined as serious, occurred more often in participants randomized to an annual infusion of the relatively new parenteral bisphosphonate, zoledronic acid, than among those given placebo, but had limited power. Two subsequent population-based case-control studies of patients receiving a more established oral bisphosphonate, alendronic acid, reported conflicting results, possibly due to uncontrolled confounding factors.Methodology/Principal Findings: We used the United Kingdom General Practice Research Database to assess the risk of atrial fibrillation and flutter in women exposed to the oral bisphosphonates, alendronic acid and risedronate sodium. The self-controlled case-series method was used to minimise the potential for confounding. The age-adjusted incidence rate ratio for atrial fibrillation or flutter in individuals during their exposure to these oral bisphosphonates (n = 2195) was 1.07 (95% CI 0.94 - 1.21). The age-adjusted incidence rate ratio for alendronic acid (n = 1489) and risedronate sodium (n = 649) exposed individuals were 1.09 (95% CI 0.93 - 1.26) and 0.99 (95% CI 0.78 - 1.26) respectively. In post-hoc analyses, an increased risk of incident atrial fibrillation or flutter was detected for patients during their first few months of alendronic acid therapy.Conclusions/Significance: We found no robust evidence of an overall long-term increased risk of atrial fibrillation or flutter associated with continued exposure to the oral bisphosphonates, alendronic acid and risedronate sodium. A possible signal for an increase in risk during the first few months of therapy with alendronic acid needs to be re-assessed in additional studies

    Structural covariance networks are coupled to expression of genes enriched in supragranular layers of the human cortex.

    Get PDF
    Complex network topology is characteristic of many biological systems, including anatomical and functional brain networks (connectomes). Here, we first constructed a structural covariance network from MRI measures of cortical thickness on 296 healthy volunteers, aged 14-24 years. Next, we designed a new algorithm for matching sample locations from the Allen Brain Atlas to the nodes of the SCN. Subsequently we used this to define, transcriptomic brain networks by estimating gene co-expression between pairs of cortical regions. Finally, we explored the hypothesis that transcriptional networks and structural MRI connectomes are coupled. A transcriptional brain network (TBN) and a structural covariance network (SCN) were correlated across connection weights and showed qualitatively similar complex topological properties: assortativity, small-worldness, modularity, and a rich-club. In both networks, the weight of an edge was inversely related to the anatomical (Euclidean) distance between regions. There were differences between networks in degree and distance distributions: the transcriptional network had a less fat-tailed degree distribution and a less positively skewed distance distribution than the SCN. However, cortical areas connected to each other within modules of the SCN had significantly higher levels of whole genome co-expression than expected by chance. Nodes connected in the SCN had especially high levels of expression and co-expression of a human supragranular enriched (HSE) gene set that has been specifically located to supragranular layers of human cerebral cortex and is known to be important for large-scale, long-distance cortico-cortical connectivity. This coupling of brain transcriptome and connectome topologies was largely but not entirely accounted for by the common constraint of physical distance on both networks

    Schizotypy-Related Magnetization of Cortex in Healthy Adolescence Is Colocated With Expression of Schizophrenia-Related Genes.

    Get PDF
    BACKGROUND: Genetic risk is thought to drive clinical variation on a spectrum of schizophrenia-like traits, but the underlying changes in brain structure that mechanistically link genomic variation to schizotypal experience and behavior are unclear. METHODS: We assessed schizotypy using a self-reported questionnaire and measured magnetization transfer as a putative microstructural magnetic resonance imaging marker of intracortical myelination in 68 brain regions in 248 healthy young people (14-25 years of age). We used normative adult brain gene expression data and partial least squares analysis to find the weighted gene expression pattern that was most colocated with the cortical map of schizotypy-related magnetization. RESULTS: Magnetization was significantly correlated with schizotypy in the bilateral posterior cingulate cortex and precuneus (and for disorganized schizotypy, also in medial prefrontal cortex; all false discovery rate-corrected ps < .05), which are regions of the default mode network specialized for social and memory functions. The genes most positively weighted on the whole-genome expression map colocated with schizotypy-related magnetization were enriched for genes that were significantly downregulated in two prior case-control histological studies of brain gene expression in schizophrenia. Conversely, the most negatively weighted genes were enriched for genes that were transcriptionally upregulated in schizophrenia. Positively weighted (downregulated) genes were enriched for neuronal, specifically interneuronal, affiliations and coded a network of proteins comprising a few highly interactive "hubs" such as parvalbumin and calmodulin. CONCLUSIONS: Microstructural magnetic resonance imaging maps of intracortical magnetization can be linked to both the behavioral traits of schizotypy and prior histological data on dysregulated gene expression in schizophrenia

    Gene transcription profiles associated with inter-modular hubs and connection distance in human functional magnetic resonance imaging networks.

    Get PDF
    Human functional magnetic resonance imaging (fMRI) brain networks have a complex topology comprising integrative components, e.g. long-distance inter-modular edges, that are theoretically associated with higher biological cost. Here, we estimated intra-modular degree, inter-modular degree and connection distance for each of 285 cortical nodes in multi-echo fMRI data from 38 healthy adults. We used the multivariate technique of partial least squares (PLS) to reduce the dimensionality of the relationships between these three nodal network parameters and prior microarray data on regional expression of 20 737 genes. The first PLS component defined a transcriptional profile associated with high intra-modular degree and short connection distance, whereas the second PLS component was associated with high inter-modular degree and long connection distance. Nodes in superior and lateral cortex with high inter-modular degree and long connection distance had local transcriptional profiles enriched for oxidative metabolism and mitochondria, and for genes specific to supragranular layers of human cortex. In contrast, primary and secondary sensory cortical nodes in posterior cortex with high intra-modular degree and short connection distance had transcriptional profiles enriched for RNA translation and nuclear components. We conclude that, as predicted, topologically integrative hubs, mediating long-distance connections between modules, are more costly in terms of mitochondrial glucose metabolism.This article is part of the themed issue 'Interpreting BOLD: a dialogue between cognitive and cellular neuroscience'.PEV is supported by an MRC Bioinformatics Research Fellowship (MR/K020706/1). Functional MRI data acquisition was supported by a strategic award from the Wellcome Trust to the University of Cambridge (IMG, PBJ, ETB) and University College London (RJD, PF): the Neuroscience in Psychiatry Network (NSPN). Additional support was provided by the NIHR Cambridge Biomedical Research Centre. Access to gene expression data was provided by the Allen Institute for Brain Sciences Website: © 2015 Allen Institute for Brain Science. Allen Human Brain Atlas [Internet]. Available from: http://human.brain-map.org. FV is supported by a Gates Cambridge PhD studentship. KW is supported by the University of Cambridge MB/PhD Programme and the Wellcome Trust. We thank Gita Prabu, Roger Tait, Cinly Ooi, John Suckling and Becky Inkster for fMRI data collection and storage. ETB is employed half-time by the University of Cambridge and half-time by GlaxoSmithKline(GSK).This is the final version of the article. It first appeared from Royal Society Publishing via http://dx.doi.org/10.1098/rstb.2015.036

    Healthcare Professional and Patient Perceptions of Changes in Colorectal Cancer Care Delivery During the COVID-19 Pandemic and Impact on Health Inequalities

    Get PDF
    BACKGROUND: The COVID-19 pandemic changed the way in which people were diagnosed and treated for cancer. We explored healthcare professional and patient perceptions of the main changes to colorectal cancer delivery during the COVID-19 pandemic and how they impacted on socioeconomic inequalities in care. METHODS: In 2020, using a qualitative approach, we interviewed patients (n = 15) who accessed primary care with colorectal cancer symptoms and were referred for further investigations. In 2021, we interviewed a wide range of healthcare professionals (n = 30) across the cancer care pathway and gathered national and local documents/guidelines regarding changes in colorectal cancer care. RESULTS: Changes with the potential to exacerbate inequalities in care, included: the move to remote consultations; changes in symptomatic triage, new COVID testing procedures/ways to access healthcare, changes in visitor policies and treatment (e.g., shorter course radiotherapy). Changes that improved patient access/convenience or the diagnostic process have the potential to reduce inequalities in care. DISCUSSION: Changes in healthcare delivery during the COVID-19 pandemic have the ongoing potential to exacerbate existing health inequalities due to changes in how patients are triaged, changes to diagnostic and disease management processes, reduced social support available to patients and potential over-reliance on digital first approaches. We provide several recommendations to help mitigate these harms, whilst harnessing the gains

    Resilient functioning is associated with altered structural brain network topology in adolescents exposed to childhood adversity

    Get PDF
    Childhood adversity is one of the strongest predictors of adolescent mental illness. Therefore, it is critical that the mechanisms that aid resilient functioning in individuals exposed to childhood adversity are better understood. Here, we examined whether resilient functioning was related to structural brain network topology. We quantified resilient functioning at the individual level as psychosocial functioning adjusted for the severity of childhood adversity in a large sample of adolescents (N = 2406, aged 14–24). Next, we examined nodal degree (the number of connections that brain regions have in a network) using brain-wide cortical thickness measures in a representative subset (N = 275) using a sliding window approach. We found that higher resilient functioning was associated with lower nodal degree of multiple regions including the dorsolateral prefrontal cortex, the medial prefrontal cortex, and the posterior superior temporal sulcus (z > 1.645). During adolescence, decreases in nodal degree are thought to reflect a normative developmental process that is part of the extensive remodeling of structural brain network topology. Prior findings in this sample showed that decreased nodal degree was associated with age, as such our findings of negative associations between nodal degree and resilient functioning may therefore potentially resemble a more mature structural network configuration in individuals with higher resilient functioning

    Adolescence is associated with genomically patterned consolidation of the hubs of the human brain connectome.

    Get PDF
    How does human brain structure mature during adolescence? We used MRI to measure cortical thickness and intracortical myelination in 297 population volunteers aged 14-24 y old. We found and replicated that association cortical areas were thicker and less myelinated than primary cortical areas at 14 y. However, association cortex had faster rates of shrinkage and myelination over the course of adolescence. Age-related increases in cortical myelination were maximized approximately at the internal layer of projection neurons. Adolescent cortical myelination and shrinkage were coupled and specifically associated with a dorsoventrally patterned gene expression profile enriched for synaptic, oligodendroglial- and schizophrenia-related genes. Topologically efficient and biologically expensive hubs of the brain anatomical network had greater rates of shrinkage/myelination and were associated with overexpression of the same transcriptional profile as cortical consolidation. We conclude that normative human brain maturation involves a genetically patterned process of consolidating anatomical network hubs. We argue that developmental variation of this consolidation process may be relevant both to normal cognitive and behavioral changes and the high incidence of schizophrenia during human brain adolescence.This study was supported by the Neuroscience in Psychiatry Network, a strategic award by the Wellcome Trust to the University of Cambridge and University College London. Additional support was provided by the NIHR Cambridge Biomedical Research Centre and the MRC/Wellcome Trust Behavioural & Clinical Neuroscience Institute. PEV is supported by the MRC (MR/K020706/1). We used the Darwin Supercomputer of the University of Cambridge High Performance Computing Service provided by Dell Inc. using Strategic Research Infrastructure Funding from the Higher Education Funding Council for England and funding from the Science and Technology Facilities Council.This is the author accepted manuscript. This is the author accepted manuscript. The final version is available from the National Academy of Sciences via https://doi.org/10.1073/pnas.160174511
    corecore