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Adolescent changes in human brain function are not entirely
understood. Here, we used multiecho functional MRI (fMRI) to
measure developmental change in functional connectivity (FC) of
resting-state oscillations between pairs of 330 cortical regions and
16 subcortical regions in 298 healthy adolescents scanned 520
times. Participants were aged 14 to 26 y and were scanned on
1 to 3 occasions at least 6 mo apart. We found 2 distinct modes of
age-related change in FC: “conservative” and “disruptive.” Conser-
vative development was characteristic of primary cortex, which
was strongly connected at 14 y and became even more con-
nected in the period from 14 to 26 y. Disruptive development was
characteristic of association cortex and subcortical regions, where
connectivity was remodeled: connections that were weak at 14 y
became stronger during adolescence, and connections that were
strong at 14 y became weaker. These modes of development were
quantified using the maturational index (MI), estimated as Spear-
man’s correlation between edgewise baseline FC (at 14 y, FC14)
and adolescent change in FC (∆FC14−26), at each region. Disrup-
tive systems (with negative MI) were activated by social cognition
and autobiographical memory tasks in prior fMRI data and sig-
nificantly colocated with prior maps of aerobic glycolysis (AG),
AG-related gene expression, postnatal cortical surface expansion,
and adolescent shrinkage of cortical thickness. The presence of
these 2 modes of development was robust to numerous sen-
sitivity analyses. We conclude that human brain organization
is disrupted during adolescence by remodeling of FC between
association cortical and subcortical areas.
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During adolescence, the human brain undergoes substantial
changes in both structure (1, 2) and function (3, 4). Accu-

rately describing these maturational processes is key to under-
standing the parallel changes in cognition and behavior as well as
the vulnerability to mental health disorders (5) that characterize
this critical developmental period.

Functional brain networks derived from functional MRI
(fMRI) have proven to be useful for understanding large-scale
brain organization (6, 7). The nodes of these fMRI networks
correspond to macroscopic brain regions, and the edges corre-
spond to the correlations in brain activity, or so-called functional
connectivity (FC), between pairs of regionally localized, low-
frequency oscillations. Several studies have reported age-related
changes in functional brain networks during adolescence, but the
findings are overall somewhat inconsistent. This is likely due in
part to small sample sizes, the lack of longitudinal data, and
significant variation in fMRI data preprocessing and analysis
methods (SI Appendix, Table S1). In addition, although sub-

cortical nuclei are theoretically well-recognized components of
frontal cortico-striato-thalamic circuits, subcortical connectivity
has generally been measured only for a few nuclei or ignored
altogether (SI Appendix, Table S2).

Multiple prior resting-state fMRI studies of human brain
development in childhood and adolescence replicably reported
an age-related increase in the strength of long-range connec-
tions accompanied by a decrease in the strength of short-range
connections (8–11). Since long-range connections tend to be
concentrated on association cortical areas involved in higher-
order cognitive functions, these results were consistent with prior
work suggesting that primary sensory and motor areas mature
earlier in childhood, whereas association areas show relatively
protracted maturation, extending into adolescence and early
adulthood (1, 2, 12–14).

Significance

How does the human brain change during adolescence? We
found 2 distinct modes of change in functional connectivity
between brain regions, “conservative” and “disruptive,” mea-
sured using functional MRI (fMRI) in healthy young people
(14 to 26 y old). Conservative regions, often specialized for
basic sensory and motor functions, were strongly connected at
age 14 before strengthening more by age 26, whereas disrup-
tive regions that were activated by complex tasks comprised
both connections that were weak at age 14 but strength-
ened by age 26 and connections that were strong at age
14 but weakened by age 26. Disruptive maturation of fMRI
connectivity between cortex and subcortex could represent
metabolically costly remodeling that underpins development
of adult faculties.
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However, it has since become clear that these changes in FC
attributed to age might have been confounded by the effects
of in-scanner head motion (13, 15–17). It is now well recog-
nized that small (<1 mm), transient head movements during
scanning can bias estimation of correlations between fMRI time
series, and this is a critical issue for developmental studies
because younger participants may find it more difficult to remain
stationary in the scanner.

Here, we measured resting-state FC maturation in an accel-
erated longitudinal study of 298 healthy adolescents, aged 14
to 26 y, scanned 1 to 3 times. To correct fMRI time series for
effects of participant in-scanner motion, we used multiecho scans
(18) denoised using multiecho independent component analy-
sis (ME-ICA) (19, 20) to identify and discard components of
fMRI time series unrelated to the blood-oxygen-level–dependent
(BOLD) signal. We further corrected residual effects of head
motion using linear regression and investigated robustness of our
findings to head movement by extensive supplementary analyses.
For each preprocessed fMRI dataset, we estimated the Pearson’s
correlation between all pairs of regional mean time series from
each of 330 cortical areas and 16 subcortical nuclei. We identified
2 modes of developmental change in fMRI connectivity defined
by positive or negative maturational index (MI) and assessed
the psychological and biological relevance of these so-called
“conservative” or “disruptive” systems by metaanalysis of prior
task-related fMRI data and by testing for anatomical colocation
of the MI map with prior maps of cortical metabolism, gene
expression, postnatal areal expansion, and adolescent cortical
shrinkage.

Results
Head Movement. A total of 36 scans were excluded by one or
more quality control criteria, including high in-scanner motion
[µ(FD) > 0.3 mm or max(FD) > 1.3 mm] (SI Appendix). Fol-
lowing scan exclusion, regional fMRI time series were available
at 330 cortical areas and 16 subcortical structures for 298 partic-
ipants (151 females) scanned a total of 520 times (SI Appendix,
Fig. S1).

In these data, we found no evidence of an age-related change
in head movement indexed by framewise displacement (FD)
(15). However, there was a positive correlation between FC and
head movement and also distance dependence of the correla-
tion between FC and FD, which was greater when the distance
between nodes was greater (SI Appendix, Fig. S2). These con-
founding effects of head movement on connectivity in ME-ICA
preprocessed data were corrected by regressing FC on mean FD
(21, 22). The residual (mean FD-corrected) estimates of FC were
not significantly correlated with head motion, and there was no
distance dependence of the relationship between residual FC
and FD (SI Appendix, Fig. S2). We, therefore, used this move-
ment correction pipeline of ME-ICA followed by FD regression
as the basis for further analysis of FC. We subsequently con-
firmed that the results obtained from our main analysis (n = 520)
were qualitatively and quantitatively consistent with the results
obtained by a sensitivity analysis using only a subset of “low-
motion” fMRI data (n = 182) that had been acquired without
discernible head motion (FD < 0.2 mm for each of 100 con-
secutive volumes) (23) and analyzed without FD regression (SI
Appendix, Figs. S24–S28, S36, and S37). To test robustness of our
results to an alternative movement correction strategy, we also
used global signal regression (GSR) for movement correction of
the whole sample (n = 520) and obtained results that were quali-
tatively consistent and correlated with results obtained both from
our main analysis and from the low-motion data (SI Appendix,
Figs. S29–S37).

Age-Related Change of Connectivity Strength. The FC, or weight of
an edge between 2 nodes, as defined by the correlation between

a pair of regional fMRI time series was generally positive. The
global mean correlation weakly increased with age [t(221) = 2.3,
P = 0.023] (SI Appendix, Fig. S3). For each regional node, we
estimated its strength of connectivity (or weighted degree) by
averaging the correlations between it and all other regions. We
also calculated the strength of connectivity specifically within
or between cortical and subcortical subsets of nodes. Using a
mixed effect linear model of age-related change, we estimated
the “baseline” strength of FC at age 14 y, FC14, and the linear
rate of change in weighted degree as a function of age, ∆FC14−26

(Fig. 1A), for each node. We also estimated the baseline and
age-related change in FC for each edge.

At 14 y, all cortical regions had positive cortico-cortical con-
nectivity strength, and the most strongly connected nodes were
located in primary motor and sensory cortical areas. Cortico-
subcortical connectivity strength had a similar anatomical dis-
tribution, with stronger connectivity between primary cortical
areas and subcortex, at baseline (Fig. 1B). Age-related rates of
change in connectivity strength were also regionally heteroge-
neous. Cortico-cortical connectivity strength increased in most
regions during adolescence, most rapidly in primary motor and
sensory cortex. However, age-related change in the strength of
cortico-subcortical connectivity had a different anatomical dis-
tribution. The most positive rates of increase in connectivity
were between subcortical nodes and association cortical areas,
whereas some primary motor and sensory cortical areas had
negative age-related changes in strength of connectivity with
subcortical regions (Fig. 1B).

To further investigate cortico-subcortical connectivity, we
estimated FC14 and ∆FC14−26 between each cortical area
and each bilateral pair of 8 subcortical regions (Fig. 1C).
At baseline, the putamen, the pallidum, and the thalamus
were strongly connected to many cortical areas, whereas the
amygdala and the accumbens had somewhat lower strength
of cortical connectivity overall. Over the course of adoles-
cence, the amygdala (PFDR < 0.05), the hippocampus (PFDR <
0.05), and the diencephalon had increased cortical connectiv-
ity, whereas the putamen, the pallidum, and the thalamus had
decreased strength of connectivity with primary somatomotor
and premotor cortex but increased strength of connectivity to
frontal and parietal association cortex. SI Appendix, Fig. S4 and
Table S3 contain details.

Maturational Index. For each regional node, there was often a
strong relationship between baseline connectivity FC14 and ado-
lescent change in connectivity ∆FC14−26 for the 345 edges
connecting it to the rest of the network. We defined the MI
as the signed coefficient (Spearman’s ρ) of the relationship
between FC14 and ∆FC14−26 for each node (Fig. 2A). MI was
often significantly nonzero by statistical tests, including a permu-
tation test controlling for regional contiguity and hemispheric
symmetry (Pspin) (SI Appendix, Fig. S5). For example, the left
somatosensory cortex had strongly positive MI, indicating that
the edges with strongest FC at baseline showed the greatest posi-
tive increase in FC during adolescence. Conversely, left posterior
cingulate cortex had strongly negative MI, indicating that the
edges with weakest FC at baseline showed the greatest positive
increase in FC during adolescence (Fig. 2B). To put it another
way, in somatosensory cortex and other regions with MI > 0,
there was a conservative mode of developmental change: connec-
tions that were already strong at 14 become stronger by the age of
26, whereas in posterior cingulate cortex and other regions with
MI < 0, there was a disruptive mode of developmental change:
connections that were weak at 14 got stronger by the age of 26
(and connections that were strong at baseline became weaker)
(Fig. 2 C and D).

Conservative changes in connectivity were concentrated
in primary motor and sensory areas corresponding to
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Fig. 1. Regional strength of FC (weighted degree) of cortical areas and subcortical nuclei at 14 y (FC14) and regional change in strength of connectivity
during adolescence (∆FC14−26). (A) Regional strength for each of 330 cortical and 16 subcortical nodes was regressed on a linear function of age for
all participants (n = 520 scans from 298 participants; mixed effects model). (B) Parameters of cortico-cortical connectivity (Left) and cortico-subcortical
connectivity (Right). Subcortico-cortical and subcortico-subcortical connectivity is in SI Appendix, Fig. S4. (C) Heterogeneous FC14 and ∆FC14−26 of individual
subcortical nuclei to cortex (subcortical regions are ordered by decreasing average rate of change). Due to bilateral symmetry and space constraints, only
left hemispheres are visualized.

cytoarchitectonic classes 1 and 5 in the von Economo atlas (24)
and the insula (Fig. 3A). This anatomical distribution maps onto
motor, ventral attention, and visual networks previously defined
by independent component analysis of adult resting-state fMRI
data (Fig. 3B) (25). Disruptive changes in connectivity were
concentrated in association cortex (von Economo class 2) and
limbic cortex, corresponding to frontoparietal, default mode,
and limbic resting-state networks. Subcortical nodes were
almost all characterized by disruptive development, with weak
baseline connectivity to association cortex becoming stronger
and strong baseline connectivity to primary motor or sensory
cortex becoming weaker (Fig. 2D).

To further characterize adolescent edgewise maturation of
FC, we visualized average FC14 and FC14−26 within and between
von Economo classes and functional networks, ascertained that
FC14−26 is not distance-dependent, and verified that most
edgewise trajectories of FC are linear (SI Appendix, Figs. S6–S8).

Contextualizing Adolescent Change in FC. We used a metaana-
lytic tool (Neurosynth) (26) to identify cognitive processes or
experimental task conditions that were associated with prior
task-related activation of disruptively vs. conservatively develop-
ing cortical systems (Fig. 3 C and D). Disruptive changes in FC
were located in cortical areas that were activated by memory,

mentalizing, and social processing tasks. Conversely, conserva-
tive changes in FC were located in cortical areas that were
activated by motor and sensory tasks.

We estimated cortical thickness shrinkage at each cortical
node in a cross-sectional dataset of structural MRI scans col-
lected from 297 of the participants in this fMRI study (1). The
cortical areas with the most negative rates of thickness change
(or fastest shrinkage) had the most negative MI (ρ = 0.16, P =
0.0052, Pspin = 0.036) (Fig. 4A). However, 2 other structural MRI
markers of adolescent brain development were not significantly
colocated with MI in this sample (SI Appendix, Fig. S9).

We further compared the MI map (Fig. 2C) with 9 inde-
pendently produced maps of a range of brain functional and
developmental parameters, including 1) evolutionary and post-
natal surface expansion of the cortex (27); 2) metabolic rates
of glucose, oxygen, and aerobic glycolysis (AG) measured by
positron emission tomography (PET) (28); 3) microarray mea-
sures of gene expression for 116 genes previously associated with
AG (14) and extracted from the Allen Human Brain Atlas (29)
as in ref. 30; and 4) areal scaling of the cortical surface (31).

We found that disruptive cortical regions (with negative MI)
had faster rates of postnatal surface expansion (ρ = −0.28,
P = 8.7 · 10−7, Pspin = 0.036), higher metabolic rates of glucose
(ρ = −0.41, P < 10−10, Pspin = 0.0032), higher rates of AG as

A

B

C D

Fig. 2. Maturational index (MI). (A) The MI for each brain region is defined as the correlation of edgewise baseline FC14 vs. rate of change ∆FC14−26.
(B) Estimation of MI is illustrated for 2 exemplar regions: left somatosensory cortex, which illustrates a “conservative” mode of development with positive
MI, and left posterior cingulate cortex, which illustrates a “disruptive” mode of development with negative MI. (C) Visualization of the MI for all cortical
regions and (D) subcortical regions (the left/right arrows correspond to the left/right hemispheres). acc, accumbens; amy, amygdala; caud, caudate; dien,
diencephalon; hipp, hippocamus; pall, pallidum; put, putamen; thal, thalamus.
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Fig. 3. Maturational index (MI) in anatomical and psychological context. (A) Distribution of MI for each cytoarchitectonic class of the von Economo atlas
(24) and (B) for resting-state networks derived from prior resting-state FC analysis by Yeo et al. (25). In both cases, subcortical regions were considered as an
additional eighth class/subnetwork. The violin plots are colored by average MI within the corresponding class of regions. (C and D) Word clouds of cognitive
terms associated with cortical brain regions that have (C) disruptive (blue) or (D) conservative (red) modes of development [Neurosynth decoding (26)]. The
size of cognitive terms corresponds to the correlation of corresponding metaanalytic maps generated by Neurosynth with each of the 2 modes.

measured by the glycolytic index (GI) (ρ = −0.56, P < 10−10,
Pspin < 10−4), and higher expression of AG-related genes (ρ =
−0.34, P = 1.8 · 10−5, Pspin = 0.0006) (Fig. 4 B–D).

All P values reported above were corrected for a total of 12
multiple comparisons using the false discovery rate. Details are
in Fig. 4 and SI Appendix, Fig. S9 and Table S4.

Sensitivity Analyses. To evaluate the robustness of our results,
we verified that the MI is consistent when edgewise FC14 and
∆FC14−26 are derived from 1,000 sets of independent ran-
dom half-splits of the data (2 × 260 scans) and when MI
components are separately derived using cortico-cortical and
subcortico-subcortical edges only (to account for potential differ-
ences between cortical and subcortical temporal signal-to-noise
ratio [tSNR]) (SI Appendix, Figs. S10 and S11).

Further, we repeated main analyses (Figs. 1–4) under 5 con-
ditions: 1) using a different cortical parcellation (SI Appendix,
Figs. S12–S15); 2) in a subset of 298 cross-sectional scans (to
rule out longitudinal effects of “regression to the mean”) (SI
Appendix, Figs. S16–S19); 3) in a subset of 396 scans from a
single scanner (to rule out scanner site effects) (SI Appendix,
Figs. S20–S23); 4) in a subset of low-motion time series from 182
scans, displaying no discernible motion (SI Appendix, Figs. S24–
S28); and 5) in the whole sample preprocessed using GSR (SI

Appendix, Figs. S29–S35). In all cases, the following key results
of the main analysis were recapitulated: 1) 2 modes of adoles-
cent change in FC were defined by positive and negative MI; 2)
conservatively maturing brain systems, defined by MI > 0, were
concentrated in primary cortical areas, and disruptively maturing
brain systems, defined by MI < 0, were concentrated in sub-
cortical and association cortical areas; 3) disruptively maturing
systems were significantly colocated with prior maps of AG and
AG-related gene expression. Additionally, FC14, ∆FC14−26 and
MI metrics were positively correlated between the main analy-
sis and the sensitivity analyses of GSR preprocessed data and a
low-motion subset of data (SI Appendix, Figs. S36 and S37).

Discussion
We have reported results from an accelerated longitudinal study
of adolescent development of FC in the healthy human brain. In
a large, population-representative sample of resting-state fMRI
data balanced for age and sex and controlled for head motion,
we found evidence for 2 modes of maturational change in the age
range 14 to 26 y, which we called conservative and disruptive.

The conservative mode of change was consolidating, or mak-
ing stronger over the course of adolescence, the connectiv-
ity of specialized sensory or motor cortical areas that were
already highly connected at age 14. Conservatively, “the rich get

A B C D

Fig. 4. Disruptive and conservative modes of fMRI maturation in developmental and metabolic context. (A) MI was positively correlated with ∆CT (1)—
regions that had disruptive development (MI < 0) had faster rates of cortical thickness (CT) shrinkage during adolescence. (B) MI was negatively correlated
with a prior map of postnatal expansion of cortical surface area (28)—disruptive maturation was greater in regions that showed greatest expansion after
birth. (C) MI was negatively correlated with a prior map of the glycolytic index, a measure of aerobic glycolysis (AG) (28), and (D) MI was negatively correlated
with a prior map of brain regional expression of AG-related genes (29, 30).
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richer.” In contrast, the disruptive mode of change was to make
connectivity stronger in areas where it was relatively weak at
age 14 or to make it weaker where it was relatively strong at
the start of adolescence. Disruptively, “the rich get poorer, and
the poor get richer.” Disruptive maturation was characteristic of
association and limbic cortex, corresponding to default mode,
frontoparietal and limbic fMRI networks previously activated
by tasks related to memory, theory of mind, and social cogni-
tion. Disruptive maturation was also characteristic of subcortical
structures.

We hypothesized that the disruptive pattern of changes in
macroscopic FC, measured by fMRI, was reflective of changes
in microscopic, synaptic connectivity in association cortical and
subcortical brain systems (2). We explored this hypothesis by
comparing the fMRI map of MI with prior brain maps of
structural, genomic, and metabolic parameters of adolescent
development.

PET has been used to map oxidative metabolism of glu-
cose and nonoxidative metabolism of glucose in the presence
of oxygen: aerobic glycolysis (AG). AG is thought to generate
energy specifically for brain developmental processes, and PET
measurements of GI demonstrated that association cortex has
sustained AG throughout adolescence to early adulthood (14,
28) (whereas primary cortical areas had relatively low AG after
late childhood [14, 28]). We found that GI was highly corre-
lated with MI. Association cortical and subcortical regions with
MI < 0 had GI > 0, whereas motor and sensory cortical areas
with MI > 0 had GI < 0. This result was corroborated by the sig-
nificant spatial correlation between a prior map of expression of
AG-related genes and the fMRI map of MI. Disruptively devel-
oping brain regions had higher levels of AG-related genes than
conservatively developing regions. We regard these convergent
results as indicating that disruptive adolescent development of
fMRI connectivity represents a metabolically expensive process
of remodeling in association cortex and subcortical structures.

We also found significant correspondence between the fMRI
map of MI and the map of cortical shrinkage derived from struc-
tural MRI data in the same sample. Cortical shrinkage is the
most well-replicated result in MRI studies of adolescent brain
development and has been mechanistically explained as a marker
of synaptic pruning and/or intracortical myelination (1). Another
structural measure of developmental activity was provided by a
prior map of postnatal expansion of cortical surface area (27).
Association cortex has both greater surface area expansion and
more disruptive development of FC. We regard these results as
convergently indicating that disruption of FC between regions is
colocated with cortical systems that are most structurally active
in their adolescent development.

Finally, we used metaanalysis of existing task-related fMRI
data to identify cognitive processes that activated cortical areas
coinciding with the 2 modes of adolescent brain development.
Conservative systems were activated by sensory and motor func-
tions that would normally have been operational since early
childhood. Disruptive systems were activated by a range of
“higher-order” functions, such as working memory, theory of
mind, and autobiographical memory, which are later maturing
social and cognitive processes.

These results generate the hypothesis that disruptive matura-
tion of FC drives the emergence of more sophisticated social-
izing, mentalizing, and executive skills as young people grow
into independent adults. Moreover, they support the corollary
hypothesis that psychiatric disorders or subclinical psychopathol-
ogy could arise in young people from atypical maturation of
association cortico-subcortical circuits (32–34).

Methodological Issues. Strengths of the study include the accel-
erated longitudinal design and the balanced sample of healthy
young people stratified by age and sex. Limitations include colo-

cation of adolescent fMRI maps with prior maps of gene expres-
sion measured post mortem in adults, lack of simultaneously
measured cognitive or behavioral data, and insufficient resolu-
tion of 3 Tesla (3T) MRI to measure the multiple functionally
specialized subnuclei comprising subcortical nodes.

Concerning the crucial factor of in-scanner head motion (15–
17), for our main analysis, we processed multiecho fMRI time
series with ME-ICA in an effort to disambiguate BOLD com-
ponents from nonneuronal sources of fMRI dynamics (19, 20).
This denoising step alone was not sufficient (23), and therefore,
we used regression to further correct FC for linear dependence
on head motion (FD regression) (21, 22). Data preprocessed by
this pipeline passed standard quality control criteria for head
movement impact on FC (SI Appendix, Fig. S2). To assess the
robustness of our results to this choice of movement correc-
tion pipeline, we conducted 2 major sensitivity analyses of a
low-motion dataset and of the whole dataset after motion cor-
rection by GSR. The results were not identical across main,
low-motion, and GSR analyses, but there are many possible fac-
tors, besides uncorrected or corrected effects of head motion,
that could contribute to observed differences (e.g., the smaller
sample size and shorter length of fMRI time series available for
the low-motion analysis). However, it is reassuring that estimates
of MI, baseline FC, and adolescent change in FC were strongly
correlated between different movement correction pipelines (SI
Appendix, Figs. S36 and S37), and on this basis, key results of
our main analysis were replicated in the low-motion subset of
scans and in the GSR-corrected scans; SI Appendix contains
details.

Conclusion. Disruptive change in FC between association cor-
tex and subcortical nuclei is likely reflective of a metabolically
expensive process of human brain development in adolescence.

Materials and Methods
Participants. A demographically balanced cohort of 298 healthy adolescents
(151 females) aged 14 to 26 y, scanned a total of 520 times, was included in
this study. There were approximately equal numbers of male and female
participants (∼60) in each of 5 age-defined strata at baseline: 14 to 15,
16 to 17, 18 to 19, 20 to 21, and 22 to 24 y inclusive. The study was
approved by the National Research Ethics Service and conducted in accor-
dance with NHS research governance standards. Participants aged 16 or
older gave informed consent; younger participants gave informed assent
and had parental consent.

MRI Acquisition and Preprocessing. Scanning was performed at 3 sites, all
operating identical 3T MRI systems (Magnetom TIM Trio; Siemens Health-
care; VB17 software). Resting-state fMRI data were acquired using a mul-
tiecho echoplanar imaging (EPI) sequence (18): 263 volumes; repetition
time (TR) = 2.42 s; GeneRalized Autocalibrating Partial Parallel Acquisition
(GRAPPA) with acceleration = 2; matrix size = 64 × 64 × 34; field of view
(FOV) = 240× 240 mm; in-plane resolution = 3.75× 3.75 mm; slice thickness
= 3.75 mm with 10% gap, 34 oblique slices; bandwidth = 2,368 Hz per pixel;
echo time (TE) = 13, 30.55, 48.1 ms.

For fMRI preprocessing, we used ME-ICA (19, 20) to identify the sources of
variance in the fMRI time series that scaled linearly with TE and could there-
fore be confidently regarded as BOLD signal. Other sources of fMRI variance
that were not BOLD-related and therefore did not scale with TE were iden-
tified by ME-ICA and discarded. The retained components, representing
BOLD contrast, were recomposed to generate a broadband denoised fMRI
time series at each voxel (35). This was bandpass filtered by the discrete
wavelet transform (Daubechies 4 wavelet), resulting in a BOLD signal in
the frequency range 0.025–0.111 Hz. Geometric realignment of scan vol-
umes was used to estimate 6 motion parameters (3 translation, 3 rotation),
from which we derived estimates of volume-to-volume head motion or FD
(15). Mean FD was used as a measure of head movement in each scan
session.

Parcellation and FC Estimation. fMRI data were parcellated by a prior cortical
template into 360 bilaterally symmetric regions (36) as well as 16 subcorti-
cal regions from FreeSurfer software (37), yielding a total of 376 regions.
Regional fMRI time series were estimated by averaging over all voxels in
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each parcel; 30 cortical regions (near frontal and temporal poles) were
excluded due to low regional mean signal, defined by a low Z score of mean
signal intensity (Z <−1.96) in at least one scan. For sensitivity analyses, we
used an alternative parcellation of cortex into 308 parcels of approximately
equal surface area (∼5 cm2) (38, 39) (SI Appendix).

FC matrices were estimated for each scan using Pearson’s correlations
between all pairs of regional time series. Residual dependence of FC on head
movement (mean FD) was corrected using linear regression (Head Move-
ment and SI Appendix, Fig. S2 contain details). Age-related change in FC
was modeled using linear mixed effect models that included age as the main
fixed effect of interest, sex and scanner site as fixed effect covariates, and
a subject-specific intercept as a random effect (SI Appendix contains further
details).

Data and Code. The data used for analyses are available at https://doi.org/
10.6084/m9.figshare.11551602 (40), and the code can be found at https://
github.com/frantisekvasa/functional network development (41).
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24. P. E. Vértes et al., Gene transcription profiles associated with inter-modular hubs
and connection distance in human functional magnetic resonance imaging networks.
Philos. Trans. R. Soc. Biol. Sci. 371, 20150362 (2016).

25. B. T.T. Yeo et al., The organization of the human cerebral cortex estimated by intrinsic
functional connectivity. J. Neurophysiol. 106, 1125–1165 (2011).

26. T. Yarkoni, R. A. Poldrack, T. E. Nichols, D. C. Van Essen, T. D. Wager, Large-scale auto-
mated synthesis of human functional neuroimaging data. Nat. Methods 8, 665–670
(2011).

27. J. Hill et al., Similar patterns of cortical expansion during human development and
evolution. Proc. Natl. Acad. Sci. U.S.A. 107, 13135–13140 (2010).

28. S. N. Vaishnavi et al., Regional aerobic glycolysis in the human brain. Proc. Natl. Acad.
Sci. U.S.A. 107, 17757–17762 (2010).

29. M. J. Hawrylycz et al., An anatomically comprehensive atlas of the adult human brain
transcriptome. Nature 489, 391–399 (2012).

30. A. Arnatkeviciute, B. D. Fulcher, A. Fornito, A practical guide to linking brain-wide
gene expression and neuroimaging data. Neuroimage 189, 353–367 (2019).

31. P. K. Reardon et al., Normative brain size variation and brain shape diversity in
humans. Science 360, 1222–1227 (2018).

32. A. S. Heller, Cortical-subcortical interactions in depression: From animal models to
human psychopathology. Front. Syst. Neurosci. 10, 1116–1124 (2016).

33. T. Wise et al., Instability of default mode network connectivity in major depression: A
two-sample confirmation study. Transl. Psychiatry 7, e1105 (2017).

34. G. Ziegler et al., Compulsivity and impulsivity traits linked to attenuated
developmental frontostriatal myelination trajectories. Nat. Neurosci. 22, 992–999
(2019).

35. S. Posse et al., Enhancement of BOLD-contrast sensitivity by single-shot multi-echo
functional MR imaging. Magn. Reson. Med. 42, 87–97 (1999).

36. M. F. Glasser et al., A multi-modal parcellation of human cerebral cortex. Nature 536,
171–178 (2016).

37. P. A. Filipek, C. Richelme, D. N. Kennedy, V. S. Caviness, The young adult
human brain: An MRI-based morphometric analysis. Cereb. Cortex 4, 344–360
(1994).

38. R. S. Desikan et al., An automated labeling system for subdividing the human cerebral
cortex on MRI scans into gyral based regions of interest. Neuroimage 31, 968–980
(2006).

39. R. Romero-Garcia, M. Atienza, L. H. Clemmensen, J. L. Cantero, Effects of network
resolution on topological properties of human neocortex. Neuroimage 59, 3522–3532
(2012).
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