4,818 research outputs found

    Fully automated segmentation and tracking of the intima media thickness in ultrasound video sequences of the common carotid artery

    Get PDF
    Abstract—The robust identification and measurement of the intima media thickness (IMT) has a high clinical relevance because it represents one of the most precise predictors used in the assessment of potential future cardiovascular events. To facilitate the analysis of arterial wall thickening in serial clinical investigations, in this paper we have developed a novel fully automatic algorithm for the segmentation, measurement, and tracking of the intima media complex (IMC) in B-mode ultrasound video sequences. The proposed algorithm entails a two-stage image analysis process that initially addresses the segmentation of the IMC in the first frame of the ultrasound video sequence using a model-based approach; in the second step, a novel customized tracking procedure is applied to robustly detect the IMC in the subsequent frames. For the video tracking procedure, we introduce a spatially coherent algorithm called adaptive normalized correlation that prevents the tracking process from converging to wrong arterial interfaces. This represents the main contribution of this paper and was developed to deal with inconsistencies in the appearance of the IMC over the cardiac cycle. The quantitative evaluation has been carried out on 40 ultrasound video sequences of the common carotid artery (CCA) by comparing the results returned by the developed algorithm with respect to ground truth data that has been manually annotated by clinical experts. The measured IMTmean ± standard deviation recorded by the proposed algorithm is 0.60 mm ± 0.10, with a mean coefficient of variation (CV) of 2.05%, whereas the corresponding result obtained for the manually annotated ground truth data is 0.60 mm ± 0.11 with a mean CV equal to 5.60%. The numerical results reported in this paper indicate that the proposed algorithm is able to correctly segment and track the IMC in ultrasound CCA video sequences, and we were encouraged by the stability of our technique when applied to data captured under different imaging conditions. Future clinical studies will focus on the evaluation of patients that are affected by advanced cardiovascular conditions such as focal thickening and arterial plaques

    XMM-Newton observation of SNR J0533-7202 in the Large Magellanic Cloud

    Get PDF
    Aims. We present an X-ray study of the supernova remnant SNR J0533-7202 in the Large Magellanic Cloud (LMC) and determine its physical characteristics based on its X-ray emission. Methods. We observed SNR J0533-7202 with XMM-Newton (flare-filtered exposure times of 18 ks EPIC-pn and 31 ks EPIC-MOS1/MOS2). We produced X-ray images of the SNR, performed an X-ray spectral analysis, and compared the results to multi-wavelength studies. Results. The distribution of X-ray emission is highly non-uniform, with the south-west region brighter than the north-east. The X-ray emission is correlated with the radio emission from the remnant. We determine that this morphology is likely due to the SNR expanding into a non-uniform ambient medium and not an absorption effect. We estimate the size to be 53.9 (\pm 3.4) x 43.6 (\pm 3.4) pc, with the major axis rotated ~64 degrees east of north. We find no spectral signatures of ejecta and infer that the X-ray plasma is dominated by swept-up interstellar medium. Using the spectral fit results and the Sedov self-similar solution, we estimate an age of ~17-27 kyr, with an initial explosion energy of (0.09-0.83) x 10^51 erg. We detected an X-ray source located near the centre of the remnant, namely XMMU J053348.2-720233. The source type could not be conclusively determined due to the lack of a multi-wavelength counterpart and low X-ray counts. We find that it is likely either a background active galactic nucleus or a low-mass X-ray binary in the LMC. Conclusions. We detected bright thermal X-ray emission from SNR J0533-7202 and determined that the remnant is in the Sedov phase of its evolution. The lack of ejecta emission prohibits us from typing the remnant with the X-ray data. Therefore, the likely Type Ia classification based on the local stellar population and star formation history reported in the literature cannot be improved upon.Comment: 7 pages, 4 figures, accepted for publication in Astronomy and Astrophysic

    Spitzer/IRS Imaging and Spectroscopy of the luminous infrared galaxy NGC 6052 (Mrk 297)

    Full text link
    We present photometric and spectroscopic data of the interacting starburst galaxy NGC 6052 obtained with the Spitzer Space Telescope. The mid-infrared (MIR) spectra of the three brightest spatially resolved regions in the galaxy are remarkably similar and are consistent with dust emission from young nearly coeval stellar populations. Analysis of the brightest infrared region of the system, which contributes ~18.5 % of the total 16\micron flux, indicates that unlike similar off-nuclear infrared-bright regions found in Arp 299 or NGC 4038/9, its MIR spectrum is inconsistent with an enshrouded hot dust (T > 300K) component. Instead, the three brightest MIR regions all display dust continua of temperatures less than ~ 200K. These low dust temperatures indicate the dust is likely in the form of a patchy screen of relatively cold material situated along the line of sight. We also find that emission from polycyclic aromatic hydrocarbons (PAHs) and the forbidden atomic lines is very similar for each region. We conclude that the ionization regions are self-similar and come from young (about 6 Myr) stellar populations. A fourth region, for which we have no MIR spectra, exhibits MIR emission similar to tidal tail features in other interacting galaxies.Comment: 20 pages in preprint form, estimated 7 pages in ApJ Aeptember 10, 2007, v666n 2 issue, six encapsulated postscript figure

    Treatment of calibration uncertainty in multi-baseline cross-correlation searches for gravitational waves

    Get PDF
    Uncertainty in the calibration of gravitational wave (GW) detector data leads to systematic errors, which must be accounted for in setting limits on the strength of GW signals. When cross-correlation measurements are made using data from a pair of instruments, as in searches for a stochastic GW background, the calibration uncertainties of the individual instruments can be combined into an uncertainty associated with the pair. With the advent of multi-baseline GW observation (e.g., networks consisting of multiple detectors such as the LIGO observatories and Virgo), a more sophisticated treatment is called for. We have described how the correlations between calibration factors associated with different pairs can be taken into account by marginalizing over the uncertainty associated with each instrument

    Enhancement of electroporation facilitated immunogene therapy via T-reg depletion

    Get PDF
    Regulatory T cells (T-regs) can negatively impact tumor antigen-specific immune responses after infiltration into tumor tissue. However, depletion of T-regs can facilitate enhanced anti-tumor responses, thus augmenting the potential for immunotherapies. Here we focus on treating a highly aggressive form of cancer using a murine melanoma model with a poor prognosis. We utilize a combination of T-reg depletion and immunotherapy plasmid DNA delivered into the B16F10 melanoma tumor model via electroporation. Plasmids encoding murine granulocyte macrophage colony-stimulating factor and human B71 were transfected with electroporation into the tumor and transient elimination of T-regs was achieved with CD25-depleting antibodies (PC61). The combinational treatment effectively depleted T-regs compared to the untreated tumor and significantly reduced lung metastases. The combination treatment was not effective in increasing the survival, but only effective in suppression of metastases. These results indicate the potential for combining T-reg depletion with immunotherapy-based gene electrotransfer to decrease systemic metastasis and potentially enhance survival

    Time-Series Photometry of M67: W UMa Systems, Blue Stragglers, and Related Systems

    Get PDF
    We present an analysis of over 2200 V images taken on 14 nights at the Mt. Laguna 1 m telescope of the open cluster M67. Our observations overlap but extend beyond the field analyzed by Gilliland et al. (1991), and complement data recently published by van den Berg et al. (2002) and Stassun et al. (2002). We show variability in the light curves of all 4 of the known W UMa variables on timescales ranging from a day to decades (for AH Cnc). We have modeled the light curve of AH Cnc, and the total eclipses allow us to determine q = 0.16 +0.03/-0.02 and i = 86 +4/-8 degrees. The position of this system near the turnoff of M67 makes it useful for constraining the turnoff mass for the cluster. We have also detected two unusual features in the light curve of AH Cnc that may be caused by prominences. We have also monitored cluster blue stragglers for variability, and we present evidence hinting at low level variations in the stragglers S752, S968, and S1263, and we place limits on the variability of a number of other cluster blue stragglers. Finally, we provide photometry of the sub-subgiant branch star S1063 showing variability on timescales similar to the orbital period, while the ``red straggler'' S1040 shows evidence of an unexplained drop in brightness at phases corresponding to the passage of the white dwarf in front of the giant.Comment: 44 pages, 16 figures, AASTeX, accepted for A

    Effect of NASA Light-emitting Diode Irradiation on Wound Healing

    Get PDF
    Objective: The purpose of this study was to assess the effects of hyperbaric oxygen (HBO) and near-infrared light therapy on wound healing. Background Data: Light-emitting diodes (LED), originally developed for NASA plant growth experiments in space show promise for delivering light deep into tissues of the body to promote wound healing and human tissue growth. In this paper, we review and present our new data of LED treatment on cells grown in culture, on ischemic and diabetic wounds in rat models, and on acute and chronic wounds in humans. Materials and Methods: In vitro and in vivo (animal and human) studies utilized a variety of LED wavelength, power intensity, and energy density parameters to begin to identify conditions for each biological tissue that are optimal for biostimulation. Results: LED produced in vitro increases of cell growth of 140–200% in mouse-derived fibroblasts, rat-derived osteoblasts, and rat-derived skeletal muscle cells, and increases in growth of 155–171% of normal human epithelial cells. Wound size decreased up to 36% in conjunction with HBO in ischemic rat models. LED produced improvement of greater than 40% in musculoskeletal training injuries in Navy SEAL team members, and decreased wound healing time in crew members aboard a U.S. Naval submarine. LED produced a 47% reduction in pain of children suffering from oral mucositis. Conclusion: We believe that the use of NASA LED for light therapy alone, and in conjunction with hyperbaric oxygen, will greatly enhance the natural wound healing process, and more quickly return the patient to a preinjury/ illness level of activity. This work is supported and managed through the NASA Marshall Space Flight Center–SBIR Program
    corecore