6,547 research outputs found

    Infrared spectrum and stability of a π-type hydrogen-bonded complex between the OH and C2H2 reactants

    Get PDF
    A hydrogen-bonded complex between the hydroxyl radical and acetylene has been stabilized in the reactant channel well leading to the addition reaction and characterized by infrared action spectroscopy in the OH overtone region. Analysis of the rotational band structure associated with the a-type transition observed at 6885.53(1) cm−1 (origin) reveals a T-shaped structure with a 3.327(5) Å separation between the centers of mass of the monomer constituents. The OH (v = 1) product states populated following vibrational predissociation show that dissociation proceeds by two mechanisms: intramolecular vibrational to rotational energy transfer and intermolecular vibrational energy transfer. The highest observed OH product state establishes an upper limit of 956 cm−1 for the stability of the π-type hydrogen-bonded complex. The experimental results are in good accord with the intermolecular distance and well depth at the T-shaped minimum energy configuration obtained from complementary ab initio calculations, which were carried out at the restricted coupled cluster singles, doubles, noniterative triples level of theory with extrapolation to the complete basis set limit

    Two-photon decays of hadronic molecules

    Get PDF
    In many calculations of the two--photon decay of hadronic molecules, the decay matrix element is estimated using the wave function at the origin prescription, in analogy to the two-photon decay of parapositronium. We question the applicability of this procedure to the two-photon decay of hadronic molecules for it introduces an uncontrolled model dependence into the calculation. As an alternative approach, we propose an explicit evaluation of the hadron loop. For shallow bound states, this can be done as an expansion in powers of the range of the molecule binding force. In the leading order one gets the well-known point-like limit answer. We estimate, in a self-consistent and gauge invariant way, the leading range corrections for the two-photon decay width of weakly bound hadronic molecules emerging from kaon loops. We find them to be small. The role of possible short-ranged operators and of the width of the scalars remains to be investigated.Comment: LaTeX2e, 26 pages, new figure and additional appendix added, version to appear in Phys.Rev.

    Phase field analysis of eutectic breakdown.

    Get PDF
    In this paper an isotropic multi-phase-field model is extended to include the effects of anisotropy and the spontaneous nucleation of an absent phase. This model is derived and compared against a published single phase model. Results from this model are compared against results from other multi-phase models, additionally this model is used to examine the break down of a regular two dimensional eutectic into a single phase dendritic front

    Regular black holes with flux tube core

    Full text link
    We consider a class of black holes for which the area of the two-dimensional spatial cross-section has a minimum on the horizon with respect to a quasiglobal (Krusckal-like) coordinate. If the horizon is regular, one can generate a tubelike counterpart of such a metric and smoothly glue it to a black hole region. The resulting composite space-time is globally regular, so all potential singuilarities under the horizon of the original metrics are removed. Such a space-time represents a black hole without an apparent horizon. It is essential that the matter should be non-vacuum in the outer region but vacuumlike in the inner one. As an example we consider the noninteracting mixture of vacuum fluid and matter with a linear equation of state and scalar phantom fields. This approach is extended to distorted metrics, with the requirement of spherical symmetry relaxed.Comment: 15 pages. 2 references adde

    Emergence of Spacetime

    Full text link
    Starting from a background Zero Point Field (or Dark Energy) we show how an array of oscillators at the Planck scale leads to the formation of elementary particles and spacetime and also to a cosmology consistent with latest observations.Comment: Latex, 39 page

    Relationship between solidification microstructure and hot cracking susceptibility for continuous casting of low-carbon and high-strength low-alloyed steels: A phase-field study

    Get PDF
    © The Minerals, Metals & Materials Society and ASM International 2013Hot cracking is one of the major defects in continuous casting of steels, frequently limiting the productivity. To understand the factors leading to this defect, microstructure formation is simulated for a low-carbon and two high-strength low-alloyed steels. 2D simulation of the initial stage of solidification is performed in a moving slice of the slab using proprietary multiphase-field software and taking into account all elements which are expected to have a relevant effect on the mechanical properties and structure formation during solidification. To account for the correct thermodynamic and kinetic properties of the multicomponent alloy grades, the simulation software is online coupled to commercial thermodynamic and mobility databases. A moving-frame boundary condition allows traveling through the entire solidification history starting from the slab surface, and tracking the morphology changes during growth of the shell. From the simulation results, significant microstructure differences between the steel grades are quantitatively evaluated and correlated with their hot cracking behavior according to the Rappaz-Drezet-Gremaud (RDG) hot cracking criterion. The possible role of the microalloying elements in hot cracking, in particular of traces of Ti, is analyzed. With the assumption that TiN precipitates trigger coalescence of the primary dendrites, quantitative evaluation of the critical strain rates leads to a full agreement with the observed hot cracking behavior. © 2013 The Minerals, Metals & Materials Society and ASM International

    Aspherical Explosion Models for SN 1998bw/GRB 980425

    Get PDF
    The recent discovery of the unusual supernova SN1998bw and its apparent correlation with the gamma-ray burst GRB 980425 has raised new issues concerning both the GRB and supernovae. Although the spectra resemble those of TypeIc supernovae, there are distinct differences at early times and SN1998bw appeared to be unusually bright and red at maximum light. The apparent expansion velocities inferred by the Doppler shift of (unidentified) absorption features appeared to be high, making SN1998bw a possible candidate for a "hypernova" with explosion energies between 20 and 50E51 erg and ejecta masses in excess of 6 - 15 M_o. Based on light curve calculations for aspherical explosions and guided by the polarization observations of "normal" SNIc and related events, we present an alternative picture that allows SN1998bw to have an explosion energy and ejecta mass consistent with core collapse supernovae (although at the 'bright' end). We show that the LC of SN1998bw can be understood as result of an aspherical explosion along the rotational axis of a basically spherical, non-degenerate C/O core of massive star with an explosion energy of 2foe and a total ejecta mass of 2 M_o if it is seen from high inclinations with respect to the plane of symmetry. In this model, the high expansion velocities are a direct consequence of an aspherical explosion which, in turn, produces oblate iso-density contours. It suggests that the fundamental core-collapse explosion process itself is strongly asymmetric.Comment: 12 pages, 8 figures, latex, aas2pp4.sty, submitted to Ap

    Cosmological term as a source of mass

    Full text link
    In the spherically symmetric case the dominant energy condition together with the requirements of regularity at the center, asymptotic flatness and fineteness of the ADM mass, defines the family of asymptotically flat globally regular solutions to the Einstein minimally coupled equations which includes the class of metrics asymptotically de Sitter at approaching the regular center. The source term corresponds to an r-dependent cosmological term given by the second rank symmetric tensor invariant under boosts in the radial direction and evolving from de Sitter vacuum in the origin to Minkowski vacuum at infinity. Space-time symmetry changes smoothly from the de Sitter group at the center to the Lorentz group at infinity through the radial boosts in between. The standard formula for the ADM mass relates it to the de Sitter vacuum replacing a central singularity at the scale of symmetry restoration. For masses exceeding a certain critical value m_{crit} de Sitter-Schwarzschild geometry describes a vacuum nonsingular black hole, while beyond m_{crit} it describes a G-lump which is a vacuum selfgravitating particlelike structure without horizons. Quantum energy spectrum of G-lump is shifted down by the binding energy, and zero-point vacuum mode is fixed at the value corresponding to the Hawking temperature from the de Sitter horizon.Comment: 8 pages, revtex, 8 figures incorporated, to appear in Classical and Quantum Gravit

    Quantized Black Holes, Their Spectrum and Radiation

    Full text link
    Under quite natural general assumptions, the following results are obtained. The maximum entropy of a quantized surface is demonstrated to be proportional to the surface area in the classical limit. The general structure of the horizon spectrum is found. The discrete spectrum of thermal radiation of a black hole Under quite natural general assumptions, the following results are obtained. The maximum entropy of a quantized surface is demonstrated to be proportional to the surface area in the classical limit. The general structure of the horizon spectrum is found. The discrete spectrum of thermal radiation of a black hole fits the Wien profile. The natural widths of the lines are much smaller than the distances between them. The total intensity of the thermal radiation is estimated. In the special case of loop quantum gravity, the value of the Barbero -- Immirzi parameter is found. Different values for this parameter, obtained under additional assumption that the horizon is described by a U(1) Chern -- Simons theory, are demonstrated to be in conflict with the firmly established holographic bound.Comment: 15 pages, content of few talks given at conferences this summe

    Quantum Zeno effect and parametric resonance in mesoscopic physics

    Full text link
    As a realization of the quantum Zeno effect, we consider electron tunneling between two quantum dots with one of the dots coupled to a quantum point contact detector. The coupling leads to decoherence and to the suppression of tunneling. When the detector is driven with an ac voltage, a parametric resonance occurs which strongly counteracts decoherence. We propose a novel experiment with which it is possible to observe both the quantum Zeno effect and the parametric resonance in electric transport.Comment: 4 pages, 2 figure
    • …
    corecore