1,088 research outputs found

    The role of the cytoskeleton in biomineralisation in haptophyte algae

    Get PDF
    The production of calcium carbonate by coccolithophores (haptophytes) contributes significantly to global biogeochemical cycling. The recent identification of a silicifying haptophyte, Prymnesium neolepis, has provided new insight into the evolution of biomineralisation in this lineage. However, the cellular mechanisms of biomineralisation in both calcifying and silicifying haptophytes remain poorly understood. To look for commonalities between these two biomineralisation systems in haptophytes, we have determined the role of actin and tubulin in the formation of intracellular biomineralised scales in the coccolithophore, Coccolithus braarudii and in P. neolepis. We find that disruption of the actin network interferes with secretion of the biomineralised elements in both C. braarudii and P. neolepis. In contrast, disruption of the microtubule network does not prevent secretion of the silica scales in P. neolepis but results in production of abnormally small silica scales and also results in the increased formation of malformed coccoliths in C. braarudii. We conclude that the cytoskeleton plays a crucial role in biomineralisation in both silicifying and calcifying haptophytes. There are some important similarities in the contribution of the cytoskeleton to these different forms of biomineralisation, suggesting that common cellular mechanisms may have been recruited to perform similar roles in both lineages

    Incoherent dose-escalation in phase I trials using the escalation with overdose control approach

    Get PDF
    A desirable property of any dose-escalation strategy for phase I oncology trials is coherence: if the previous patient experienced a toxicity, a higher dose is not recommended for the next patient; similarly, if the previous patient did not experience a toxicity, a lower dose is not recommended for the next patient. The escalation with overdose control (EWOC) approach is a model-based design that has been applied in practice, under which the dose assigned to the next patient is the one that, given all available data, has a posterior probability of exceeding the maximum tolerated dose equal to a pre-specified value known as the feasibility bound. Several methodological and applied publications have considered the EWOC approach with both feasibility bounds fixed and increasing throughout the trial. Whilst the EWOC approach with fixed feasibility bound has been proven to be coherent, some proposed methods of increasing the feasibility bound regardless of toxicity outcomes of patients can lead to incoherent dose-escalation. This paper formalises a proof that incoherent dose-escalation can occur if the feasibility bound is increased without consideration of preceding toxicity outcomes, and shows via simulation studies that only small increases in the feasibility bound are required for incoherent dose-escalations to occur

    Toxicity-dependent feasibility bounds for the escalation with overdose control approach in phase I cancer trials

    Get PDF
    Phase I trials of anti-cancer therapies aim to identify a maximum tolerated dose (MTD), defined as the dose that causes unacceptable toxicity in a target proportion of patients. Both rule-based and model-based methods have been proposed for MTD recommendation. The escalation with overdose control (EWOC) approach is a model-based design where the dose assigned to the next patient is one that, given all available data, has a posterior probability of exceeding the MTD equal to a pre-specified value known as the feasibility bound. The aim is to conservatively dose-escalate and approach the MTD, avoiding severe overdosing early on in a trial. The EWOC approach has been applied in practice with the feasibility bound either fixed or varying throughout a trial, yet some of the methods may recommend incoherent dose-escalation, that is, an increase in dose after observing severe toxicity at the current dose. We present examples where varying feasibility bounds have been used in practice, and propose a toxicity-dependent feasibility bound approach that guarantees coherent dose-escalation and incorporates the desirable features of other EWOC approaches. We show via detailed simulation studies that the toxicity-dependent feasibility bound approach provides improved MTD recommendation properties to the original EWOC approach for both discrete and continuous doses across most dose-toxicity scenarios, with comparable performance to other approaches without recommending incoherent dose escalation.G. M. Wheeler and A. P. Mander are supported by the UK Medical Research Council (grant number G0800860). M. J. Sweeting is supported by a European Research Council Advanced Investigator Award: EPIC-Heart (grant number 268834), the UK Medical Research Council (grant number MR/L003120/1), the British Heart Foundation and the Cambridge National Institute for Health Research Biomedical Research Centre

    A Bayesian model‐free approach to combination therapy phase I trials using censored time‐to‐toxicity data

    Get PDF
    The product of independent beta probabilities escalation design for dual agent phase I dose escalation trials is a Bayesian model‐free approach for identifying multiple maximum tolerated dose combinations of novel combination therapies. Despite only being published in 2015, the design has been implemented in at least two oncology trials. However, these trials require patients to have completed follow‐up before clinicians can make dose escalation decisions. For trials of radiotherapy or advanced therapeutics, this may lead to impractically long trial durations due to late‐onset treatment‐related toxicities. We extend the product of independent probabilities escalation design to use censored time‐to‐event toxicity outcomes for making dose escalation decisions. We show via comprehensive simulation studies and sensitivity analyses that trial duration can be reduced by up to 35%, particularly when recruitment is faster than expected, without compromising on other operating characteristics

    AplusB: A Web Application for Investigating A plus B Designs for Phase I Cancer Clinical Trials

    Get PDF
    In phase I cancer clinical trials, the maximum tolerated dose of a new drug is often found by a dose-escalation method known as the A + B design. We have developed an interactive web application, AplusB, which computes and returns exact operating characteristics of A + B trial designs. The application has a graphical user interface (GUI), requires no programming knowledge and is free to access and use on any device that can open an internet browser. A customised report is available for download for each design that contains tabulated operating characteristics and informative plots, which can then be compared with other dose-escalation methods. We present a step-by-step guide on how to use this application and provide several illustrative examples of its capabilities

    Lessons learned from EVOLVE for the planning of future global randomized trials in chronic kidney disease

    Get PDF
    The effect of the calcimimetic cinacalcet on cardiovascular disease in patients undergoing hemodialysis with secondary hyperparathyroidism (sHPT) was evaluated in the EVOLVE trial. This was the largest (in size) and longest (in duration) randomized controlled clinical trial undertaken in this population. During planning, execution, analysis and reporting of the trial many lessons were learned, including those related to the use of a composite cardiovascular primary endpoint, definition of endpoints (particularly heart failure and severe unremitting HPT), importance of age for optimal stratification at randomization, use of unadjusted and adjusted intention-to-treat analysis for the primary outcome, how to respond to a lower than predicted event rate during the trial, development of a pre-specified analytic plan that accounted for non-adherence and for co-interventions that diminished the power of the trial to observe a treatment effect, determination of the credibility of a subgroup effect, use of adverse effects database to investigate rare diseases, collection of blood for biomarker measurement not designated prior to trial initiation, and interpretation of the benefits to harms ratio for individual patients. It is likely that many of these issues will arise in planning of future trials in chronic kidney disease

    The potential roles of osmotic and non-osmotic sodium handling in mediating effects of SGLT2 inhibitors on heart failure

    Get PDF
    Concomitant type 2 diabetes and chronic kidney disease (CKD) increases the risk of heart failure (HF). Recent STUDIES: demonstrate beneficial effects of sodium-glucose cotransporter 2 inhibitors (SGLT2i) on CKD progression and HF hospitalization in patients with and without diabetes. In addition to inhibiting glucose reabsorption, SGLT2i reduce proximal tubular sodium reabsorption, possibly leading to transient natriuresis. We review the hypothesis that SGLT2i's natriuretic and osmotic diuretic effects mediate their cardio-protective effects. The degree to which these benefits are related to changes in sodium, independent of the kidney, is currently unknown. Aside from effects on osmotically active sodium, we explore the intriguing possibility that SGLT2i could also modulate non-osmotic sodium storage. This alternative hypothesis is based on emerging literature that challenges the traditional two-compartment model of sodium balance to provide support for a three-compartment model that includes the binding of sodium to glycosaminoglycans, such as those in muscles and skin. This recent research on non-osmotic sodium storage, as well as direct cardiac effects of SGLT2i, provides possibilities for other ways in which SGLT2i might mitigate HF risk. Overall, we review the effects of SGLT2i on sodium balance and sensitivity, cardiac tissue, interstitial fluid and plasma volume, and non-osmotic sodium storage

    The requirement for calcification differs between ecologically important coccolithophore species

    Get PDF
    Summary Coccolithophores are globally distributed unicellular marine algae that are characterized by their covering of calcite coccoliths. Calcification by coccolithophores contributes significantly to global biogeochemical cycles. However, the physiological requirement for calcification remains poorly understood as non‐calcifying strains of some commonly used model species, such as Emiliania huxleyi, grow normally in laboratory culture. To determine whether the requirement for calcification differs between coccolithophore species, we utilized multiple independent methodologies to disrupt calcification in two important species of coccolithophore: E. huxleyi and Coccolithus braarudii. We investigated their physiological response and used time‐lapse imaging to visualize the processes of calcification and cell division in individual cells. Disruption of calcification resulted in major growth defects in C. braarudii, but not in E. huxleyi. We found no evidence that calcification supports photosynthesis in C. braarudii, but showed that an inability to maintain an intact coccosphere results in cell cycle arrest. We found that C. braarudii is very different from E. huxleyi as it exhibits an obligate requirement for calcification. The identification of a growth defect in C. braarudii resulting from disruption of the coccosphere may be important in considering their response to future changes in ocean carbonate chemistry

    Clinical performance of methylation as a biomarker for cervical carcinoma in situ and cancer diagnosis: A worldwide study.

    Get PDF
    The shift towards primary human papillomavirus (HPV)-based screening has necessitated the search for a secondary triage test that provides sufficient sensitivity to detect high-grade cervical intraepithelial neoplasia (CIN) and cancer, but also brings an improved specificity to avoid unnecessary clinical work and colposcopy referrals. We evaluated the performance of the previously described DNA-methylation test (S5) in detecting CIN3 and cancers from diverse geographic settings in high-, medium- and low-income countries, using the cut-off of 0.80 and exploratory cut-offs of 2.62 and 3.70. Assays were performed using exfoliated cervical specimens (n = 808) and formalin-fixed biopsies (n = 166) from women diagnosed with cytology-negative results (n = 220), CIN3 (n = 204) and cancer stages I (n = 245), II (n = 249), III (n = 28) and IV (n = 22). Methylation increased proportionally with disease severity (Cuzick test for trend, P < .0001). S5 accurately separated women with negative-histology from CIN3 or cancer (P < .0001). At the 0.80 cut-off, 543/544 cancers were correctly identified as S5 positive (99.81%). At cut-off 3.70, S5 showed a sensitivity of 95.77% with improved specificity. The S5 odds ratios of women negative for cervical disease vs CIN3+ were significantly higher than for HPV16/18 genotyping at all cut-offs (all P < .0001). At S5 cut-off 0.80, 96.15% of consistently high-risk human papillomavirus (hrHPV)-negative cancers (tested with multiple hrHPV-genotyping assay) were positive by S5. These cancers may have been missed in current primary hrHPV-screening programmes. The S5 test can accurately detect CIN3 and malignancy irrespective of geographic context and setting. The test can be used as a screening and triage tool. Adjustment of the S5 cut-off can be performed considering the relative importance given to sensitivity vs specificity

    Modular and predictable assembly of porous organic molecular crystals

    No full text
    Nanoporous molecular frameworks are important in applications such as separation, storage and catalysis. Empirical rules exist for their assembly but it is still challenging to place and segregate functionality in three-dimensional porous solids in a predictable way. Indeed, recent studies of mixed crystalline frameworks suggest a preference for the statistical distribution of functionalities throughout the pores rather than, for example, the functional group localization found in the reactive sites of enzymes. This is a potential limitation for 'one-pot' chemical syntheses of porous frameworks from simple starting materials. An alternative strategy is to prepare porous solids from synthetically preorganized molecular pores. In principle, functional organic pore modules could be covalently prefabricated and then assembled to produce materials with specific properties. However, this vision of mix-and-match assembly is far from being realized, not least because of the challenge in reliably predicting three-dimensional structures for molecular crystals, which lack the strong directional bonding found in networks. Here we show that highly porous crystalline solids can be produced by mixing different organic cage modules that self-assemble by means of chiral recognition. The structures of the resulting materials can be predicted computationally, allowing in silico materials design strategies. The constituent pore modules are synthesized in high yields on gram scales in a one-step reaction. Assembly of the porous co-crystals is as simple as combining the modules in solution and removing the solvent. In some cases, the chiral recognition between modules can be exploited to produce porous organic nanoparticles. We show that the method is valid for four different cage modules and can in principle be generalized in a computationally predictable manner based on a lock-and-key assembly between modules
    • 

    corecore