10 research outputs found

    Brucellosis in Sub-Saharan Africa:Current challenges for management, diagnosis and control

    Get PDF
    Brucellosis is a highly contagious zoonosis caused by bacteria of the genus Brucella and affecting domestic and wild mammals. In this paper, the bacteriological and serological evidence of brucellosis in Sub-Saharan Africa (SSA) and its epidemiological characteristics are discussed. The tools available for the diagnosis and treatment of human brucellosis and for the diagnosis and control of animal brucellosis and their applicability in the context of SSA are presented and gaps identified. These gaps concern mostly the need for simpler and more affordable antimicrobial treatments against human brucellosis, the development of a B. melitensis vaccine that could circumvent the drawbacks of the currently available Rev 1 vaccine, and the investigation of serological diagnostic tests for camel brucellosis and wildlife. Strategies for the implementation of animal vaccination are also discussed.Publishe

    Agroforestry Systems for Ammonia Abatement. AC0201 Final Report

    No full text
    Ammonia (NH3) emissions to the atmosphere increased significantly during the 20th century, largely due to the intensification of agricultural production. Ammonia is a soluble and reactive gas that is emitted by volatilization from various agricultural nitrogen forms including urea, uric acid and mineral fertilizers. Emissions are dependent on various meteorological inputs like temperature and wind speed, and are higher in warmer drying conditions, with smaller emissions occurring under cooler wetter conditions. Impacts of excess nitrogen can include eutrophication and acidification effects on semi-natural ecosystems that can lead to species composition changes. Agroforestry Ammonia Abatement (AAA) is a practical concept which uses both the dispersive effect of a barrier and the uptake of NH3 into the tree canopy to mitigate NH3 emissions. This work built upon the research carried out in Defra project AC0201, bringing together measurements, modelling and agroeconomic analyses to build an assessment of the potential benefits and drawbacks of applying AAA strategies both on a local and national scale. The project objectives were to assess the efficacy of farm woodland features for the recapture of agricultural NH3 emissions. The potential of farm woodlands for NH3 mitigation at a local and the UK scale were assessed. The combined modelling and measurement results from this project show that AAA carefully planned and implemented can lead to a significant decrease in NH3 concentrations downwind from sources and a moderate, up to 20% net decrease in emissions to the atmosphere. AAA systems could be used as a protective measure of downwind sensitive ecosystems where local concentration reductions can be higher. Use of existing woodland plantations and panting new forestry can both be used to mitigate emissions, though scrubbing of NH3 at source and reuse would also be a solution. UK scale modelling shows that targeted application of tree planting around agricultural installations would have a modest effect by modifying ‘on-farm’ emission factors, however when the approach is targeted in regions hot-spot emissions, significant effects on NH3 and N-deposition can be achieved.In many agricultural businesses there are no current economic advantages for converting valuable arable land to woodland without specific opportunity benefits (e.g. woodland egg price margins due to animal welfare considerations, carbon or nitrogen credits). However as the woodland egg example shows, when other considerations become relevant, AAA can be a useful approach. It is noted that mitigating ammonia with trees only addresses one nitrogen flow in the farming systems and the net effect on both the reactive and GHG N budgets over the landscape scale should be considered

    Development and evaluation of a calibrator material for nucleic acid-based assays for diagnosing aspergillosis.

    No full text
    Contains fulltext : 185003.pdf (publisher's version ) (Closed access)Twelve laboratories evaluated candidate material for an Aspergillus DNA calibrator. The DNA material was quantified using limiting-dilution analysis; the mean concentration was determined to be 1.73 x 10(10) units/ml. The calibrator can be used to standardize aspergillosis diagnostic assays which detect and/or quantify nucleic acid.1 juli 201

    Virale Infektionen

    No full text
    corecore