5 research outputs found

    Degassing-induced chemical heterogeneity at the 2011-2012 Cordón Caulle eruption

    Get PDF
    Low H2O concentrations preserved in the erupted products from the 2011-2012 eruption at Cordón Caulle, Chile, have limited its use as a recorder of the shallow degassing processes responsible for the observed hybrid activity. However, volatile trace element heterogeneity (e.g. Li, Pb, Tl) is observed in different textural domains (e.g. breccias, tuffisites), which each represent the competing processes of fracturing, gas fluxing and melt relaxation occurring at different locations within the upper conduit. Elemental depletions in tuffisite veins record scavenging of metals by the fluxing gas phase. Preserved concentration gradients indicate deep-conduit degassing events are short-lived (~minutes), whilst late-stage activity involves hours of gas venting from a single location. Later-erupted material is more degassed than earlier-erupted bombs indicating a progressive loss of volatiles with eruption duration. Combining in situ textural and volatile trace element analyses can constrain evolving degassing processes in systems that are depleted in H2O and CO

    A reappraisal of explosive–effusive silicic eruption dynamics: syn-eruptive assembly of lava from the products of cryptic fragmentation

    Get PDF
    Silicic volcanic eruptions range in style from gently effusive to highly explosive, and may switch style unpredictably during a single eruption. Direct observations of subaerial rhyolitic eruptions (Chaiten 2008, Cordón Caulle 2011–2012, Chile) challenged long-standing paradigms of explosive and effusive eruptive styles and led to the formulation of new models of hybrid activity. However, the processes that govern such hybrid explosive–effusive activity remain poorly understood. Here, we bring together observations of the well-studied 2011–2012 Cordón Caulle eruption with new textural and petrologic data on erupted products, and video and still imagery of the eruption. We infer that all of the activity – explosive, effusive, and hybrid – was fed by explosive fragmentation at depth, and that effusive behaviour arose from sticking and sintering, in the shallow vent region, of the clastic products of deeper, cryptic fragmentation. We use a scaling approach to determine that there is sufficient time available, during emplacement, for diffusive pyroclast degassing and sintering to produce a degassed plug that occludes the shallow conduit, feeding clastogenic, apparently effusive, lava-like deposits. Based on evidence from Cordón Caulle, and from other similar eruptions, we further argue that hybrid explosive–effusive activity is driven by episodic gas-fracking of the occluding lava plug, fed by the underlying pressurized ash- and pyroclast-laden region. The presence of a pressurized pocket of ash-laden gas within the conduit provides a mechanism for generation of harmonic tremor, and for syn-eruptive laccolith intrusion, both of which were features of the Cordón Caulle eruption. We conclude that the cryptic fragmentation models is more consistent with available evidence than the prevailing model for effusion of silicic lava that assume coherent non-fragmental rise of magma from depth to the surface without wholesale explosive fragmentation

    Under the surface: Textural analysis of complex, multi-component Vulcanian bombs produced during the hybrid effusive-explosive phase of the 2011-2012 Cordón Caulle eruption, Chile

    No full text
    The ascent, eruption, and deposition of volcanic pyroclasts is complex, but the resultant rocks have distinctive textural markers that indicate the unseen processes that were operating during a given eruption. These textures can be used to build a picture of the sequence of events and the eruptive environment. Vulcanian eruptions, short-lived, intermittent blasts interpreted as the clearing of a conduit plug, produce ballistic pyroclasts with textures that are directly correlated with the makeup of the plug material. A late phase of the recent eruption of Puyehue-Cordón Caulle (2011-2012, Southern Chile) produced a striking array of, colourful, and texturally diverse Vulcanian bombs. The eruption began on June 4th 2011 with Plinian to Sub-Plinian activity, transitioning to a phase of obsidian lava effusion on June 15th, and then to a hybrid effusive-explosive phase (vulcanian bomb ejection coeval with an effusive obsidian lava flow) in January 2012. Transitions from explosive to effusive activity are often described as singular, definitive, one-way events, at odds with the hybrid effusive-explosive activity seen at Puyehue-Cordón Caulle. Textures in these bombs indicate that the constituent melts have experienced several (possibly countless) episodes of fragmentation, sintering, densification, shearing, and vesiculation within a conduit-scale breccia pack, conceptually equivalent to a conduit-scale tuffisite vein. In all examined bombs, centimetre to micron scale clasts of basaltic-andesite (~SiO2 54-55 wt%) are found, with textures that indicate a magmatic origin. Although volumetrically minor, co-mingling of a hotter, mafic magmatic component has implications for the anomalously hot rhyolite, as well as the onset and longevity of the hybrid eruption phase. Textural and geochemical characteristics of bombs elucidate complex processes in the shallow conduit and vent, advancing the understanding of tuffisite veins and Vulcanian eruption dynamics, which are far from straightforward

    Under the surface: Textural analysis of complex, multi-component Vulcanian bombs produced during the hybrid effusive-explosive phase of the 2011-2012 Cordón Caulle eruption, Chile

    No full text
    The ascent, eruption, and deposition of volcanic pyroclasts is complex, but the resultant rocks have distinctive textural markers that indicate the unseen processes that were operating during a given eruption. These textures can be used to build a picture of the sequence of events and the eruptive environment. Vulcanian eruptions, short-lived, intermittent blasts interpreted as the clearing of a conduit plug, produce ballistic pyroclasts with textures that are directly correlated with the makeup of the plug material. A late phase of the recent eruption of Puyehue-Cordón Caulle (2011-2012, Southern Chile) produced a striking array of, colourful, and texturally diverse Vulcanian bombs. The eruption began on June 4th 2011 with Plinian to Sub-Plinian activity, transitioning to a phase of obsidian lava effusion on June 15th, and then to a hybrid effusive-explosive phase (vulcanian bomb ejection coeval with an effusive obsidian lava flow) in January 2012. Transitions from explosive to effusive activity are often described as singular, definitive, one-way events, at odds with the hybrid effusive-explosive activity seen at Puyehue-Cordón Caulle. Textures in these bombs indicate that the constituent melts have experienced several (possibly countless) episodes of fragmentation, sintering, densification, shearing, and vesiculation within a conduit-scale breccia pack, conceptually equivalent to a conduit-scale tuffisite vein. In all examined bombs, centimetre to micron scale clasts of basaltic-andesite (~SiO2 54-55 wt%) are found, with textures that indicate a magmatic origin. Although volumetrically minor, co-mingling of a hotter, mafic magmatic component has implications for the anomalously hot rhyolite, as well as the onset and longevity of the hybrid eruption phase. Textural and geochemical characteristics of bombs elucidate complex processes in the shallow conduit and vent, advancing the understanding of tuffisite veins and Vulcanian eruption dynamics, which are far from straightforward

    Under the surface: Textural analysis of complex, multi-component Vulcanian bombs produced during the hybrid effusive-explosive phase of the 2011-2012 Cordón Caulle eruption, Chile

    No full text
    The ascent, eruption, and deposition of volcanic pyroclasts is complex, but the resultant rocks have distinctive textural markers that indicate the unseen processes that were operating during a given eruption. These textures can be used to build a picture of the sequence of events and the eruptive environment. Vulcanian eruptions, short-lived, intermittent blasts interpreted as the clearing of a conduit plug, produce ballistic pyroclasts with textures that are directly correlated with the makeup of the plug material. A late phase of the recent eruption of Puyehue-Cordón Caulle (2011-2012, Southern Chile) produced a striking array of, colourful, and texturally diverse Vulcanian bombs. The eruption began on June 4th 2011 with Plinian to Sub-Plinian activity, transitioning to a phase of obsidian lava effusion on June 15th, and then to a hybrid effusive-explosive phase (vulcanian bomb ejection coeval with an effusive obsidian lava flow) in January 2012. Transitions from explosive to effusive activity are often described as singular, definitive, one-way events, at odds with the hybrid effusive-explosive activity seen at Puyehue-Cordón Caulle. Textures in these bombs indicate that the constituent melts have experienced several (possibly countless) episodes of fragmentation, sintering, densification, shearing, and vesiculation within a conduit-scale breccia pack, conceptually equivalent to a conduit-scale tuffisite vein. In all examined bombs, centimetre to micron scale clasts of basaltic-andesite (~SiO2 54-55 wt%) are found, with textures that indicate a magmatic origin. Although volumetrically minor, co-mingling of a hotter, mafic magmatic component has implications for the anomalously hot rhyolite, as well as the onset and longevity of the hybrid eruption phase. Textural and geochemical characteristics of bombs elucidate complex processes in the shallow conduit and vent, advancing the understanding of tuffisite veins and Vulcanian eruption dynamics, which are far from straightforward.</p
    corecore