36 research outputs found

    An Analysis of the Role of the Indigenous Microbiota in Cholesterol Gallstone Pathogenesis

    Get PDF
    Background and Aims: Cholesterol gallstone disease is a complex process involving both genetic and environmental variables. No information exists regarding what role if any the indigenous gastrointestinal microbiota may play in cholesterol gallstone pathogenesis and whether variations in the microbiota can alter cholesterol gallstone prevalence rates. Methods: Genetically related substrains (BALB/cJ and BALB/cJBomTac) and (BALB/AnNTac and BALB/cByJ) of mice obtained from different vendors were compared for cholesterol gallstone prevalence after being fed a lithogenic diet for 8 weeks. The indigenous microbiome was altered in these substrains by oral gavage of fecal slurries as adults, by cross-fostering to mice with divergent flora at <1day of age or by rederiving into a germ-free state. Results: Alterations in the indigenous microbiome altered significantly the accumulation of mucin gel and normalized gallbladder weight but did not alter cholesterol gallstone susceptibility in conventionally housed SPF mice. Germ-free rederivation rendered mice more susceptible to cholesterol gallstone formation. This susceptibility appeared to be largely due to alterations in gallbladder size and gallbladder wall inflammation. Colonization of germ-free mice with members of altered Schaedler flora normalized the gallstone phenotype to a level similar to conventionally housed mice. Conclusions: These data demonstrate that alterations in the gastrointestinal microbiome may alter aspects of cholesterol gallstone pathogenesis and that in the appropriate circumstances these changes may impact cholesterol cholelithogenesis.National Institutes of Health (U.S.) (Grant T32OD010978)National Institutes of Health (U.S.) (Grant P30ES002109)National Institutes of Health (U.S.) (Grant R01AT004326

    H. pylori-infection and antibody immune response in a rural Tanzanian population

    Get PDF
    BACKGROUND: Helicobacter pylori (H. pylori) infection is ubiquitous in sub-Saharan Africa, but paradoxically gastric cancer is rare. METHODS: Sera collected during a household-based survey in rural Tanzania in 1985 were tested for anti-H. pylori IgG and IgG subclass antibodies by enzyme immunoassay. Odds ratios (OR) and confidence intervals (CI) of association of seropositivity with demographic variables were computed by logistic regression models. RESULTS: Of 788 participants, 513 were aged ≤17 years. H. pylori seropositivity increased from 76% at 0–4 years to 99% by ≥18 years of age. Seropositivity was associated with age (OR 11.5, 95% CI 4.2–31.4 for 10–17 vs. 0–4 years), higher birth-order (11.1; 3.6–34.1 for ≥3(rd )vs. 1(st )born), and having a seropositive next-older sibling (2.7; 0.9–8.3). Median values of IgG subclass were 7.2 for IgG1 and 2.0 for IgG2. The median IgG1/IgG2 ratio was 3.1 (IQR: 1.7–5.6), consistent with a Th2-dominant immune profile. Th2-dominant response was more frequent in children than adults (OR 2.4, 95% CI 1.3–4.4). CONCLUSION: H. pylori seropositivity was highly prevalent in Tanzania and the immunological response was Th2-dominant. Th2-dominant immune response, possibly caused by concurrent bacterial or parasitic infections, could explain, in part, the lower risk of H. pylori-associated gastric cancer in Africa

    Intestinal Microbiota Composition of Interleukin-10 Deficient C57BL/6J Mice and Susceptibility to Helicobacter hepaticus-Induced Colitis

    Get PDF
    The mouse pathobiont Helicobacter hepaticus can induce typhlocolitis in interleukin-10-deficient mice, and H. hepaticus infection of immunodeficient mice is widely used as a model to study the role of pathogens and commensal bacteria in the pathogenesis of inflammatory bowel disease. C57BL/6J Il10[superscript −/−] mice kept under specific pathogen-free conditions in two different facilities (MHH and MIT), displayed strong differences with respect to their susceptibilities to H. hepaticus-induced intestinal pathology. Mice at MIT developed robust typhlocolitis after infection with H. hepaticus, while mice at MHH developed no significant pathology after infection with the same H. hepaticus strain. We hypothesized that the intestinal microbiota might be responsible for these differences and therefore performed high resolution analysis of the intestinal microbiota composition in uninfected mice from the two facilities by deep sequencing of partial 16S rRNA amplicons. The microbiota composition differed markedly between mice from both facilities. Significant differences were also detected between two groups of MHH mice born in different years. Of the 119 operational taxonomic units (OTUs) that occurred in at least half the cecum or colon samples of at least one mouse group, 24 were only found in MIT mice, and another 13 OTUs could only be found in MHH samples. While most of the MHH-specific OTUs could only be identified to class or family level, the MIT-specific set contained OTUs identified to genus or species level, including the opportunistic pathogen, Bilophila wadsworthia. The susceptibility to H. hepaticus-induced colitis differed considerably between Il10[superscript −/−] mice originating from the two institutions. This was associated with significant differences in microbiota composition, highlighting the importance of characterizing the intestinal microbiome when studying murine models of IBD.National Institutes of Health (U.S.) (Grant NIH P01-CA26731)National Institutes of Health (U.S.) (Grant NIH P30ES0026731)National Institutes of Health (U.S.) (Grant NIH R01-OD011141

    Low Occurrence of Helicobacter

    No full text

    Verifying and Quantifying Helicobacter pylori Infection Status of Research Mice [Chapter 19]

    No full text
    available in PMC 2013 January 15Mice used to model helicobacter gastritis should be screened by PCR prior to experimental dosing to confirm the absence of enterohepatic Helicobacter species (EHS) that colonize the cecum and colon of mice. Natural infections with EHS are common and impact of concurrent EHS infection on Helicobacter pylori-induced gastric pathology has been demonstrated. PCR of DNA isolated from gastric tissue is the most sensitive and efficient technique to confirm the H. pylori infection status of research mice after experimental dosing. To determine the level of colonization, quantitative PCR to estimate the equivalent colony-forming units of H. pylori per μg of mouse DNA is less labor-intensive than limiting dilution culture methods. Culture recovery of H. pylori is a less sensitive technique due to its fastidious in vitro culture requirements; however, recovery of viable organisms confirms persistent colonization and allows for further molecular characterization of wild-type or mutant H. pylori strains. ELISA is useful to confirm PCR and culture results and to correlate pro- and anti-inflammatory host immune responses with lesion severity and cytokine gene or protein expression. Histologic assessment with a silver stain has a role in identifying gastric bacteria with spiral morphology consistent with H. pylori but is a relatively insensitive technique and lacks specificity. A variety of spiral bacteria colonizing the lower bowel of mice can be observed in the stomach, particularly if gastric atrophy develops, and these species are not morphologically distinct at the level of light microscopy either in the stomach or lower bowel. Other less commonly used techniques to localize H. pylori in tissues include immunohistochemistry using labeled polyclonal antisera or in situ hybridization for H. pylori rRNA. In this chapter, we will summarize strategies to allow initiation of experiments with helicobacter-free mice and then focus on PCR and ELISA techniques to verify and quantify H. pylori infection of research mice

    Helicobacter saguini, a novel Helicobacter isolated from cotton-top tamarins with ulcerative colitis, has proinflammatory properties and induces typhlocolitis and dysplasia in gnotobiotic IL-10−/−mice

    No full text
    A urease-negative, fusiform, novel bacterium named Helicobacter saguini was isolated from the intestines and feces of cotton-top tamarins (CTTs) with chronic colitis. Helicobacter sp. was detected in 69% of feces or intestinal samples from 116 CTTs. The draft genome sequence, obtained by Illumina MiSeq sequencing, for H. saguini isolate MIT 97-6194-5, consisting of similar to 2.9 Mb with a G+C content of 35% and 2,704 genes, was annotated using the NCBI Prokaryotic Genomes Automatic Annotation Pipeline. H. saguini contains homologous genes of known virulence factors found in other enterohepatic helicobacter species (EHS) and H. pylori. These include flagellin, gamma-glutamyl transpeptidase (ggt), collagenase, the secreted serine protease htrA, and components of a type VI secretion system, but the genome does not harbor genes for cytolethal distending toxin (cdt). H. saguini MIT 97-6194-5 induced significant levels of interleukin-8 (IL-8) in HT-29 cell culture supernatants by 4 h, which increased through 24 h. mRNAs for the proinflammatory cytokines IL-1 beta, tumor necrosis factor alpha (TNF-alpha), IL-10, and IL-6 and the chemokine CXCL1 were upregulated in cocultured HT-29 cells at 4 h compared to levels in control cells. At 3 months postinfection, all H. saguini-monoassociated gnotobiotic C57BL/129 IL-10(-/-) mice were colonized and had seroconverted to H. saguini antigen with a significant Th1-associated increase in IgG2c (P<0.0001). H. saguini induced a significant typhlocolitis, associated epithelial defects, mucosa-associated lymphoid tissue (MALT) hyperplasia, and dysplasia. Inflammatory cytokines IL-22, IL-17a, IL-1 beta, gamma interferon (IFN-gamma), and TNF-alpha, as well as inducible nitric oxide synthase (iNOS) were significantly upregulated in the cecal tissues of infected mice. The expression of the DNA damage response molecule gamma-H2AX was significantly higher in the ceca of H. saguini-infected gnotobiotic mice than in the controls. This model using a nonhuman primate Helicobacter sp. can be used to study the pathogenic potential of EHS isolated from primates with naturally occurring inflammatory bowel disease (IBD) and colon cancer

    Salmonella SPI-1-mediated neutrophil recruitment during enteric colitis is associated with reduction and alteration in intestinal microbiota

    No full text
    Gastrointestinal infections involve an interactive tripartite relationship between the invading pathogen, the host, and the host's resident intestinal microbiota. To characterize the host inflammatory response and microbiota alterations during enteric salmonellosis, C57BL/6 mice were pre-treated with a low dose of streptomycin (LD model) and then infected with S. typhimurium strains, including mutants in the two Type III secretion systems, SPI-1 and SPI-2 (invAmut and ssaRmut, respectively). Cecal colonization and inflammation in the LD model were evaluated to assess infection success and progression, and compared to the traditional high dose (HD) model. Perturbations to the microbial community in the LD model were assessed via evaluation of total microbial numbers, the proportion of intestinal γ-Proteobacteria and tRFLP analysis. In the LD model, consistently high colonization by the parental strain (WT) and invAmut S. typhimurium was associated with significant intestinal pathology. However, microbial community profiles were more similar both in numbers and composition between mice infected with the mutant strains, than with the WT strain. Consequently, significant infection-induced inflammation did not always produce similar microbiota perturbations. Large numbers of luminal neutrophils were observed in the ceca of WT-infected, but not in invAmut or ssaRmut infected mice. Neutrophils were thus implicated as a potential mediator of microbiota perturbations during WT enteric salmonellosis. These studies offer a new model of S. typhimurium-induced intestinal disease that retains the three participants of the disease process and further defines the role of virulence factors, the host microbiota, and inflammation in S. typhimurium-induced intestinal disease
    corecore