4,147 research outputs found

    Diversity and Abundance of Hymenopterous Parasitoids Associated with Anastrepha fraterculus (Diptera: Tephritidae) in Native and Exotic Host Plants in Misiones, Northeastern Argentina

    Get PDF
    Some Major host species used by the tephritid fruit flies Anastrepha fraterculus (Wiede-mann) and Ceratitis capitata (Wiedemann), including Acca sellowiana (O. Berg) Burret, Campomanesia xanthocarpa O. Berg, Psidium guajava L., Prunus persica (L.) Batsch, Eriobotrya japonica (Thunb.) Lindl., Citrus reticulata Blanco var. Murcott, C. aurantium L., C. paradisi Macfadyen var. Dalan Dan, and C. paradisi var. Sudashi, were sampled for fruit fly larvae between Feb and Dec 2000 in the northernmost section of the Paranaense forest, in the Province of Misiones, NE Argentina. Both A. fraterculus and C. capitata were obtained from these host plant species, with A. fraterculus accounting for 93% of all tephritid puparia identified. Ten species of larval-pupal parasitoids were recovered from A. fraterculus; Doryctobracon areolatus (Szépligeti), D. brasiliensis (Szépligeti), Utetes anastrephae (Viereck), Opius bellus (Gahan), Diachasmimorpha longicaudata (Ashmead) (Opiinae, raconidae), Odontosema anastrephae Borgmeier, Lopheucoila anastrephae (Rohwer), Aganaspis pelleranoi (Brèthes) (Eucoilinae, Figitidae), Asobara anastrephae (Muessebeck) (Alyssinae, Braconidae), and Aceratoneuromyia indica (Silvestri) (Tetrastichinae, Eulophidae). All these parasitoids, with the exception of D. longicaudata and A. indica, are native to the Neotropical region. No parasitoids were recovered from C. capitata puparia. Asobara anastrephae and O. anastrephae are newly recorded in Argentina, whereas D. brasiliensis, U. anastrephae, and L. anastrephae are newly reported in Misiones. The eucoiline A. pelleranoi wasthe most abundant parasitoid species. Acca sellowiana and P. guajava harbored the highest parasitoid abundance and diversity.Fil: Schliserman, Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigaciones y Transferencia de Catamarca. Universidad Nacional de Catamarca. Centro de Investigaciones y Transferencia de Catamarca; ArgentinaFil: Ovruski Alderete, Sergio Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; ArgentinaFil: Decoll, Olga. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Misiones; ArgentinaFil: Wharton, Robert. Texas A&M University; Estados Unido

    The Antarctic dry valley lakes: Relevance to Mars

    Get PDF
    The similarity of the early environments of Mars and Earth, and the biological evolution which occurred on early Earth, motivates exobiologists to seriously consider the possiblity of an early Martian biota. Environments are being identified which could contain Martian life and areas which may presently contain evidence of this former life. Sediments which were thought to be deposited in large ice-covered lakes are present on Mars. Such localities were identified within some of the canyons of the Valles Marineris and more recently in the ancient terrain in the Southern Hemisphere. Perennially ice-covered Antarctic lakes are being studied in order to develop quantitative models that relate environmental factors to the nature of the biological community and sediment forming processes. These models will be applied to the Martian paleolakes to establish the scientific rationale for the exobiological study of ancient Martian sediments

    High frequency study of FRB 20180916B using the 100-m Effelsberg radio telescope

    Full text link
    FRB 20180916B is a repeating fast radio burst (FRB) with an activity period of 16.33 days. In previous observations ranging from ∼150−1400\sim 150-1400 MHz, the activity window was found to be frequency dependent, with lower frequency bursts occurring later. In this work, we present the highest-frequency detections of bursts from this FRB, using the 100-m Effelsberg Radio Telescope at 4−-8 GHz. We present the results from two observing campaigns. We performed the first campaign over an entire activity period which resulted in no detections. The second campaign was in an active window at 4−-8 GHz which we predicted from our modelling of chromaticity, resulting in eight burst detections. The bursts were detected in a window of 1.35 days, 3.6 days preceding the activity peak seen by CHIME, suggesting the chromaticity extends to higher frequency. The detected bursts have narrower temporal widths and larger spectral widths compared to lower frequencies. All of them have flat polarization position angle sweeps and high polarization fractions. The bursts also exhibit diffractive scintillation due to the Milky Way, following a f3.90±0.05f^{3.90\pm0.05} scaling, and vary significantly over time. We find that burst rate across frequency scales as f−2.6±0.2f^{-2.6\pm0.2}. Lastly, we examine implications of the frequency dependency on the source models.Comment: 11 pages, 8 figures, comments welcome, submitted to MNRA

    Modelling Annual Scintillation Velocity Variations of FRB 20201124A

    Full text link
    Compact radio sources exhibit scintillation, an interference pattern arising from propagation through inhomogeneous plasma, where scintillation patterns encode the relative distances and velocities of the source, scattering material, and Earth. In Main et al. 2022, we showed that the scintillation velocity of the repeating fast radio burst FRB20201124A can be measured by correlating pairs of burst spectra, and suggested that the scattering was nearby the Earth at ∼0.4 \sim0.4\,kpc from the low values of the scintillation velocity and scattering timescale. In this work, we have measured the scintillation velocity at 10 epochs spanning a year, observing an annual variation which strongly implies the screen is within the Milky Way. Modelling the annual variation with a 1D anisotropic or 2D isotropic screen results in a screen distance dl=0.24±0.04 d_{l} = 0.24\pm0.04\,pc or dl=0.37±0.07 d_{l} = 0.37\pm0.07\,pc from Earth respectively, possibly associated with the Local Bubble or the edge of the Orion-Eridanus Superbubble. Continued monitoring, and using measurements from other telescopes particularly at times of low effective velocity will help probe changes in screen properties, and distinguish between screen models. Where scintillation of an FRB originates in its host galaxy or local environment, these techniques could be used to detect orbital motion, and probe the FRB's local ionized environment.Comment: 5 pages, 5 Figures, submitted to MNRAS Letter

    The Effects of Neutral Inertia on Ionospheric Currents in the High-Latitude Thermosphere Following a Geomagnetic Storm

    Get PDF
    Results of an experimental and theoretical investigation into the effects of the time dependent neutral wind flywheel on high-latitude ionospheric electrodynamics are presented. The results extend our previous work which used the National Center for Atmospheric Research Thermosphere/Ionosphere General Circulation Model (NCAR TIGCM) to theoretically simulate flywheel effects in the aftermath of a geomagnetic storm. The previous results indicated that the neutral circulation, set up by ion-neutral momentum coupling in the main phase of a geomagnetic storm, is maintained for several hours after the main phase has ended and may dominate height-integrated Hall currents and field-aligned currents for up to 4-5 hours. We extend the work of Deng et al. to include comparisons between the calculated time-dependent ionospheric Hall current system in the storm-time recovery period and that measured by instruments on board the Dynamics Explorer 2 (DE 2) satellite. Also, comparisons are made between calculated field-aligned currents and those derived from DE 2 magnetometer measurements. These calculations also allow us to calculate the power transfer rate (sometimes called the Poynting flux) between the magnetosphere and ionosphere. The following conclusions have been drawn: (1) Neutral winds can contribute significantly to the horizontal ionospheric current system in the period immediately following the main phase of a geomagnetic storm, especially over the magnetic polar cap and in regions of ion drift shear. (2) Neutral winds drive Hall currents that flow in the opposite direction to those driven by ion drifts. (3) The overall morphology of the calculated field-aligned current system agrees with previously published observations for the interplanetary magnetic field (IMF) B(sub Z) southward conditions, although the region I and region 2 currents are smeared by the TI(ICM model grid resolution. (4) Neutral winds can make significant contributions to the field-aligned current system when B(sub Z) northward conditions prevail following the main phase of a storm, but can account for only a fraction of the observed currents. (5) DE 2 measurements provide a demonstration of "local" (satellite-altitude) flywheel effects. (6) On the assumption that the magnetosphere acts as an insulator, we calculate neutral-wind-induced polarization electric fields of approx. 20-30 kV in the period immediately following the geomagnetic storm

    Rotation measure variations in Galactic Centre pulsars

    Full text link
    We report the results of an observational campaign using the Effelsberg 100-m telescope of the pulsars J1746−-2849, J1746−-2850, J1746−-2856 and J1745−-2912 located in the Central Molecular Zone (CMZ) close to the Galactic centre in order to study rotation measure (RM) variations. We report for the first time the RM value of PSR J1746−-2850 to be −12234±181-12234 \pm 181 rad m−2^{-2}. This pulsar shows significant variations of RM of 300−400300-400 rad m−2^{-2} over the course of months to years that suggest a strongly magnetized environment. The structure function analysis of the RM of PSR J1746−-2850 revealed a steep power-law index of 1.87−0.3+0.41.87_{-0.3}^{+0.4} comparable to the value expected for isotropic turbulence. This pulsar also showed large dispersion measure (DM) variation of ∼50\sim 50 pc cm−3^{-3} in an event lasting a few months where the RM increased by ∼200\sim 200 rad m−2^{-2}. The large difference in RM between PSR J1746−-2849 and PSR J1746−-2850 despite the small angular separation reveals the presence of a magnetic field of at least 70 μ\muG in the CMZ and can explain the lack of polarization in the radio images of the region. These results contribute to our understanding of the magnetic field in the CMZ and show similarities between the RM behaviours of these pulsars and some fast radio bursts (FRBs).Comment: Accepted for publication on Monthly Notices of the Royal Astronomical Society, 13 pages, 7 figure
    • …
    corecore