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Abstract

Assessments of river condition are needed to guide all aspects of river management.

Such assessments have evolved over three decades from simply capturing the mosaic

of river physical habitats to recognizing that habitat mosaics are dynamic, driven

mainly by physical processes and modified by human (indirect) pressures and (direct)

interventions. To embrace these broader aspects, riparian as well as in-stream envi-

ronments need to be evaluated, going beyond subjective assessments to incorporate

observations that support understanding of both physical habitat structure and

cause-effect relationships. This paper reports on an operational approach to

assessing the physical condition of rivers, which attempts to bridge the gap between

a physical habitat and a geomorphic condition assessment. The approach forms part

of Biodiversity Metric 2.0, a habitat-based methodology for measuring and account-

ing for biodiversity losses and gains resulting from development or land management

change at individual project sites across England. The river condition assessment

component adopts a bottom-up multi-scale approach that integrates field observa-

tions of physical habitats and of features indicative of geomorphic processes to

deliver assessments of longer subreaches, whose condition is then evaluated within

the context of the reach-scale geomorphological type of river. By applying the

assessment before, immediately after, and following recovery from project imple-

mentation, changes in condition and their causes can be evaluated. The assessment

method is presented to an international audience, outlining its structure, application

and testing, and critically discussing its strengths and weaknesses, because the meth-

odological approach could be helpful for devising methods for application in other

environmental contexts.
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1 | INTRODUCTION

Assessments of river condition are needed to guide all aspects of

river management from conservation to mitigation and restoration

(Fryirs, 2015) and increasingly to inform decision-making around biodi-

versity net gain in relation to proposed river-related developments

(Crosher et al., 2019). With the growing recognition, from the early

1980s, of the importance of physical habitat for river ecosystem health

(see e.g., Calow & Petts, 1994; Maddock, 1999) numerous approaches

to assessing the physical habitat quality of rivers have been developed

in recent decades, often to complement more established methods for

evaluating water quantity and quality and biological quality. Several

reviews have compared the plethora of approaches developed and

applied worldwide to meet different objectives and reflect local environ-

ments (Belletti, Rinaldi, Buijse, Gurnell, & Mosselman, 2015; Fernandez,

Barquin, & Raven, 2011; Fryirs, 2015; Fryirs, Arthington, & Grove, 2008;

Parsons, Thoms, & Norris, 2004; Raven et al., 2002; Tadaki, Brierley, &

Cullum, 2014; Weiss, Matouskova, & Matschullat, 2008) and so we do

not attempt such a review here. Instead, we use information extracted

from these previous reviews to present a brief overview of river physical

assessment approaches. Overall, such methods have evolved from early

ones designed to capture the mosaic of river physical habitats at the

time of survey to those that increasingly recognize that habitat mosaics

are dynamic, driven mainly by physical processes and modified by

human (indirect) pressures and (direct) interventions. The character and

condition of river ecosystems depends on such physical dynamics.

In relation to early approaches, Raven et al. (2002) and Weiss

et al. (2008) provided insights concerning methods devised to assess the

“hydromorphological quality” of rivers, as required by the European

Union's (EU) Water Framework Directive in establishing the ecological

status of rivers. Parsons et al. (2004) made a similar call for standardiza-

tion but at the national level following a review of existing methods of

river habitat assessment in Australia. Some general observations on river

habitat assessment approaches emerge from the international review by

Fernandez et al. (2011). Of the 55 assessment methods analysed, most

gather data at a single spatial scale, focusing either on a fixed river

length or a river length scaled to the river's width but typically less than

1 km long (hereafter referred to as the subreach scale). Nearly all of the

methods are field based and designed for single thread, perennial rivers

and streams that are wadeable. Many of the methods are qualitative,

providing subjective scores on groups of physical habitat characteristics.

However, most record semi-quantitative observations of characteristics

such as channel dimensions, flow types or flow status, channel sub-

strate, bank stability, riparian vegetation structure, artificial structures,

and adjacent land uses. Additionally, in most cases, the methods focus

on instream and immediate riparian habitats, frequently omitting any

information on the valley and river network structure. Nevertheless,

some methods capture basic valley and river characteristics such as

slope, stream order and presence of a floodplain, for longer river lengths

(>1 km and typically 10 km or more in length, hereafter called the reach

scale) within which field-surveyed subreaches are located.

Belletti et al. (2015) produced the most comprehensive review to

date as a part of their work within the collaborative EU-funded

project, REFORM, which aimed to develop guidance and tools

to improve river restoration practice (http://www.reformrivers.eu/).

They reviewed 121 hydromorphological methods published between

1983 and 2013, across 26 countries. These include 61 methods from

18 European countries, reflecting the increase in new approaches

developed since 2000 in response to implementation of the EU Water

Framework Directive. They assigned each method to one of four cate-

gories, identifying 11 hydrological methods that assess the nature

and any alteration of a river's flow regime and 15 methods that focus

on the assessment of riparian conditions. The most common group

included 73 methods and protocols that characterize and classify

physical habitat elements, which they described as physical habitat

assessments or river habitat surveys. Lastly, a group of 22 “morpholog-

ical assessment” methods provide a broader evaluation of river physi-

cal conditions, including assessments of channel forms, geomorphic

adjustments, and human alterations. The distinguishing feature of

these “morphological assessment” methods is that they go beyond a

simple record of the physical habitats that are present. They empha-

size river dynamics and processes, particularly through pressure and

response variables or indicators, and they support understanding of

not only physical habitat structure but also cause-effect relationships,

something which Tadaki et al. (2014) stressed as important. Following

from what Belletti et al. (2015) define as “morphological assessment”

methods, Fryirs (2015) provides an in-depth review of “geomorphic

condition assessments”. She emphasizes the difference between clas-

sification procedures, which simply group similar morphologies, and

condition assessments, which compare observed conditions with

those that are “expected” for river reaches of the same geomorphic

river type.

Here we report on an operational approach to assessing the phys-

ical condition of rivers that attempts to bridge the gap between a

“physical habitat assessment” as defined by Belletti et al. (2015) and

a “geomorphic condition assessment” as defined by Fryirs (2015).

Although the method is designed for application within England, it is

presented to an international audience because the broad approach

could be helpful to others devising similar assessment methods for

application in other environmental contexts.

Following an explanation of why a new condition assessment

method was developed (Section 2), a brief overview is provided

(Section 3) and the method is elaborated in more detail (Section 4).

The method is then applied to a calibration data set (Section 5) to illus-

trate its performance and how it can be used to evaluate river condi-

tion at different levels of detail. The potential future development and

broader applications of the method are discussed (Section 6) before

some brief concluding remarks (Section 7).

2 | WHY A NEW CONDITION ASSESSMENT
METHOD WAS DEVELOPED

The method for assessing river condition was designed to deliver one

component of Biodiversity Metric 2.0 (BM2, Crosher et al., 2019),

a methodology for measuring and accounting for biodiversity losses
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and gains resulting from development or land management change

across England. Despite the availability of the numerous assessment

methods described in the previous section, a new method was needed

that would match the specific requirements of BM2.

First, BM2:

“provides developers, planners, land managers and

others with a tool to help limit damage to nature in the

first place and to help it thrive. The metric uses habitat

features as a proxy measure for capturing the value

and importance of nature. It uses a simple calculation

that takes into account the importance of these fea-

tures for nature: their size, ecological condition, loca-

tion and proximity to nearby “connecting” features.

The metric enables assessments to be made of the pre-

sent and forecast future biodiversity value of a site.

This can be applied to an individual field or an entire

river catchment” (Crosher et al., 2019, p. 6).

This context demanded that the rivers and streams component

was habitat-based, emphasizing river condition, river length and

connectivity. This constrained any potential reuse of previously-

developed methods to those that assessed habitats.

Second, BM2 is applied to the area within the “red line” boundary

which defines the perimeter of a development site. Many develop-

ment sites in England are small, and so the method needed to be

equally applicable to small as well as large sites. There was no suitable

pre-existing pan-European method for assessing rivers that was

habitat-based and delivered a condition assessment at the required

scale(s) with a quantitative condition score appropriate to the BM2

scheme. The “River Habitat Survey” (RHS) is a “method designed to

characterize and assess, in broad terms, the physical structure of

freshwater streams and rivers” (Environment Agency, 2003) that was

developed for application across the UK to identify and characterize

broad contrasts in physical habitat within and between river networks.

The RHS survey is widely used and very successfully achieves its

stated aims, but it is applied to a fixed subreach length of 500 m,

which is too long for the present application. Furthermore, in order

to capture habitat across 500 m, RHS incorporates systematic tran-

sect sampling of certain physical habitats. Such systematic sampling is

appropriate for the applications for which RHS was designed, but not

for the present application. In the context of BM2, a habitat-based

method was required that had sufficient spatial resolution for detailed

monitoring and to support forecasting, while being sufficiently flexible

to allow assessments of project sites regardless of their geographical

extent.

The River Condition Assessment tool described in this paper

meets both of the above requirements. Individual field survey units

(modules) characterize a length of river that is 10 to 50 m long

(depending on the river width), multiples of which are aggregated into

subreaches 50 to 250 m in length. Within these short lengths the field

survey records the presence, abundance or dominance of a long list of

natural and human-related features across the bank tops, bank faces

and river bed. This provides measurements at a sufficient spatial reso-

lution to deliver a sensitive assessment of the physical condition of

the river subreach, and to allow repeat surveys (monitoring) to capture

even quite subtle changes over time. In addition, the surveyor takes

three photographs from the bank top at the mid-point of each module

to capture the central bank top to bank top cross section, and the

upper and lower parts of the survey area. These photographs support

precise relocation of survey sites for monitoring purposes as well

as providing a pictorial impression of how the subreach changes

between surveys.

In addition to meeting the requirements of BM2 and maintaining

compatibility with RHS (the field survey incorporates the same suite

of physical features as RHS), the opportunity was taken to develop a

method that could help to bridge the gap between the required physi-

cal habitat survey and a more process-oriented geomorphic condition

assessment by incorporating the following features:

1. The field survey data are interpreted in the context of the river's

geomorphic type because different types of river support different

suites of habitats and differ in the nature and rate of habitat

turnover.

2. The field data are interpreted to reflect the fact that in the humid

temperate and fairly low river energy environment of England,

riparian and aquatic plants are important drivers of geomorphic

dynamics (Cotton, Wharton, Bass, Heppell, & Wotton, 2006;

Corenblit, Tabacchi, Steiger, & Gurnell, 2007; Gurnell, 2014;

Gurnell, Bertoldi, & Corenblit, 2012, Gurnell, Corenblit,

et al., 2016).

3. The method derives over 30 condition indicators from field survey

data. The scores on each of the condition indicators illustrate the

degree to which a surveyed river shows positive (natural) or nega-

tive (human modified) elements of condition.

4. Likely maximum values of the positive condition indicators are pro-

posed for each river type, because different types of river should

show different characteristics, allowing the functioning of different

types of river to be accounted for in the assessment. For example,

a low-energy, silt-bed river in good condition may not display

diverse bed material or sedimentary bed features but in England it

would be expected to support varied aquatic and riparian vegeta-

tion and vegetation-related physical features (e.g., vegetated bars,

berms, benches, islands; see Gurnell, O'Hare, O'Hare, Scarlett, &

Liffen, 2013).

5. A preliminary, integrative, condition score is calculated from the

set of individual condition indicator scores in the same way for all

river types, but it is then translated into a final condition score tak-

ing into account the geomorphic type of river under consideration.

Furthermore, the expected (likely maximum) condition indicator

scores for each river type can be used to identify why a particular

river subreach is not achieving good condition, given its river type.

6. In addition to the typical habitats captured in a habitat-based

assessment, the field survey records numerous features that

are indicative of geomorphic processes and channel evolutionary

trajectories (e.g., channel dimensions; bed siltation; bank

GURNELL ET AL. 3



stratigraphy; process-specific bank profile types; marginal and in-

channel geomorphic features including those initiated by naturally-

functioning [unmanaged] dead and living vegetation).

While the proposed river condition assessment tool may not pro-

vide a fully-fledged geomorphic condition assessment, it is far more

than a simple physical habitat assessment tool. It has been designed

for application by river professionals, regardless of their scientific dis-

cipline, but it has a firm geomorphological underpinning.

3 | METHODOLOGICAL OVERVIEW

3.1 | The river condition assessment methodology

The river condition assessment methodology is designed for applica-

tion to the relatively small rivers, subdued topography, humid-

temperate climate and heavy human pressures and interventions

experienced in areas of relatively high population density typically

found in England. It is a multi-scale science-based approach, incorpo-

rating the following components:

1. At the finest spatial scale, a field survey that focuses on short

lengths (“modules”) of river, within which the type and abundance

of all physical features are recorded comprehensively at the same

spatial scale. The field survey (called MoRPh, see Section 3.2)

records information within an area extending across the river to

include the bed, bank faces and bank tops, and along the river for a

length that approximates twice the river width. The broader flood-

plain is not surveyed because its characteristics are captured

within other components of BM2.

2. The survey assesses riparian and aquatic vegetation structure and

the variety and abundance of riparian and channel physical mate-

rials and features, including those that are indicative of contempo-

rary physical processes. It also assesses the variety and abundance

of human physical (direct) interventions and (indirect) pressures.

3. River module surveys provide the finest scale element of a three-

tiered spatial assessment of river condition: “module” (river length

approximately twice the river width); “subreach” (river length approx-

imately 10 times the river width); and “reach” (river length typi-

cally >5 km).

4. One or more subreach surveys are conducted within a develop-

ment site (hereafter called the project site) to provide a minimum

coverage of 20% of the river length with at least one surveyed

subreach located to capture the apparently most physically

degraded part of the river.

5. The provisional physical condition of the river is assessed for

each surveyed subreach using more than 30 condition indicators

extracted from the field survey data. A final condition assessment

and score (good-5, fairly good-4, moderate-3, fairly poor-2, poor-1)

is then produced for each subreach to reflect its condition in rela-

tion to what might be expected to be achieved given the geomor-

phic type of the river reach within which the project site is located.

3.2 | The MoRPh survey

The river condition assessment method incorporates the pre-existing

MoRPh field survey (Gurnell, England, Shuker, & Wharton, 2019;

Shuker et al., 2017), which was developed to enable UK citizen scien-

tists to survey physical habitat at a scale that is compatible with bio-

logical surveys. Since its launch in 2016, over 500 surveyors have

been trained and over 3,000 MoRPh surveys have been undertaken

for sites across the United Kingdom and Republic of Ireland. MoRPh's

development was prompted by wide adoption within the UK of

the Riverfly citizen science survey (www.riverflies.org, Di Fore &

Fitch, 2016), which captures macroinvertebrate data, and the desire

to characterize physical habitat at Riverfly monitoring sites.

MoRPh was designed to be applied to the small (≤30 m wide) single

thread river channels that are typical of England. The field survey

records the physical and vegetation structural features and human

interventions and pressures across the river bed, the channel edge-

water margins, the bank faces and the bank tops to a distance of 10 m

(Table 1). Observed characteristics or features are recorded according

to their cover abundance (i.e., A = absent, T = trace (<5% cover),

P = present (5–33% cover), E = extensive (>33% cover)) or a count

of the feature type or in a few cases simply by their presence. On the

rare occasions where small (≤30 m wide) multithread rivers are encoun-

tered, a single MoRPh module survey is applicable where both outer

banks are visible from the bank top location used as an observation

point. This could be the case for bar-braided channels and channels con-

taining small islands. Otherwise, the MoRPh survey is applied to individ-

ual channels within multithread systems, with the combined survey

information capturing the river's integrated physical character. By sur-

veying several contiguous modules, the survey can be upscaled to cap-

ture the range of physical habitats accessible to mobile species such as

fish, and also the geomorphic properties of an extended river subreach.

An on-line information system supports input and storage of

MoRPh survey data, calculation and mapping of indicators extracted

from survey data, and data downloads into spreadsheets and GIS

layers (www.modularriversurvey.org).

4 | ASSESSING RIVER CONDITION

The River Condition Assessment tool evaluates river condition within

a project site (Figure 1). It incorporates field (MoRPh module) surveys

of one or more MoRPh5 subreaches (sets of five contiguous MoRPh

module surveys) and a desk-based assessment of the indicative geo-

morphic type of the river reach containing the project site (Figure 1).

MoRPh5 surveys are conducted to cover at least 20% of the river

length within the project site, ensuring that no two subreaches are

more than four subreach lengths apart and that one of the subreaches

captures the apparently most degraded part of the river channel

(Figure 1a). The length of each MoRPh module is 10, 20, 30, or 40 m

depending, respectively, upon whether the river is <5 m, 5–<10 m,

10–<20 m or 20–<30 m wide. Additionally, rivers over 30 m wide or

where the river is too wide and/or deep to adequately survey the
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TABLE 1 Information captured by a MoRPh module survey

Location Type of information Summary of recorded properties

Channel cross section Channel dimensions Left and right bank heights, bankfull width, water

width and water depth at time of survey

Bank tops within 10 m of channel edge

(right and left banks surveyed

separately)

Artificial ground cover Abundance of: footpath-pedestrianized, transport

infrastructure, industrial-commercial buildings,

residential buildings, storage areas, landfill areas,

arable agriculture-allotments, permanently-

vegetated agriculture (pasture, orchard),

permanently vegetated recreation (playing fields,

parks, gardens), plantation woodlands, open water

(canal, reservoir)

Terrestrial vegetation Abundance of: unvegetated, mosses/lichens, short/

creeping herbs/grasses, tall herbs/grasses, scrub/

shrubs, saplings/trees

Tree features Abundance of: fallen trees, leaning trees, J-shaped

trees, branches trailing into river, large wood

Non-native invasive plant species (NNIPS) Abundance of: Himalayan Balsam, Japanese

Knotweed, Giant Hogweed, Floating Pennywort,

other species 1, other species 2

Water-related features Abundance of: disconnected ponds, connected

ponds, side channels, wetlands (a) short non-

woody vegetation (b) tall non-woody vegetation

(c) shrubs and trees

Bank faces and water's edge (right and

left banks surveyed separately)

Natural bank profiles Dominant and subdominant types and abundance

from: vertical, vertical with overhang, vertical

undercut, vertical with toe, steep, gentle, complex

Artificial bank profiles Dominant and subdominant types and abundance

from: resectioned, two-stage, embanked, set-back

embankment, poached.

Natural bank materials Dominant and subdominant material types and

abundance in upper and lower bank face: bedrock,

boulder, cobble, gravel, earth, sand, silt, clay,

organic, peat

Artificial bank materials Concrete, concrete and brick/stone (cemented),

brick/stone (cemented), sheet piling, wood piling,

builder's waste (rubble), rip-rap, gabions, willow

spiling, planted reeds, biotextiles, washed out.

Dominant and subdominant types, horizontal and

vertical extents

Bank and channel margin natural features Abundance of: unvegetated and vegetated side bars,

berms, benches, stable and eroding cliffs, toe

deposits, nest holes/burrows, marginal

backwaters, tributary confluences

Bank and channel margin artificial features Number and extent of: pipes/outfalls, jetties,

deflectors

Terrestrial vegetation Abundance of: unvegetated, mosses/lichens, short/

creeping herbs/grasses, tall herbs/grasses, scrub/

shrubs, saplings/trees

Tree features Abundance of: fallen trees, leaning trees, J-shaped

trees, branches trailing into river, large wood,

exposed tree roots, discrete organic accumulations

Aquatic vegetation at bank-channel margin Abundance of: liverworts/mosses, emergent broad-

leaved, emergent linear-leaved, amphibious,

filamentous algae

Non-native invasive plant species (NNIPS) Abundance of: Himalayan Balsam, Japanese

Knotweed, Giant Hogweed, Floating Pennywort,

other species 1, other species 2

(Continues)
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TABLE 1 (Continued)

Location Type of information Summary of recorded properties

Channel bed Natural bed materials Abundance of: bedrock, boulder, cobble, gravel,

sand, silt, clay, organic, peat, continuous thin

overlying silt layer, patchy thin overlying silt layer

Artificial bed materials Abundance of dominant and subdominant type from:

concrete, concrete and brick, brick, sheet piling,

wood piling, builder's waste, rip-rap, gabions

Water surface flow types Abundance of: free fall, chute, broken standing

waves, unbroken standing waves, upwelling,

ripples, smooth, imperceptible flow, dry

Natural physical bed features Abundance of: exposed bedrock, exposed vegetated

and unvegetated boulders/rocks, vegetated/

unvegetated mid-channel bars, islands, cascades.

Counts of: Pools, riffles, steps, waterfalls

Artificial physical bed features Abundance of: large trash, bridge shadow. Count of:

large, medium, and small weirs, bridge piers.

Presence of culverts

Aquatic vegetation within the wetted

channel

Abundance of: unvegetated, liverworts/mosses,

emergent broad-leaved, emergent linear-leaved,

floating leaved, free floating, amphibious,

submerged broad-leaved, submerged linear-

leaved, submerged fine-leaved, filamentous algae

Vegetation interacting with the wetted

channel

Abundance of: shade, submerged tree roots, large

wood, discrete accumulations of organic material.

Count of: large wood dams, fallen trees

Non-native invasive plant species (NNIPS) Abundance of: Himalayan Balsam, Japanese

Knotweed, Giant Hogweed, Floating Pennywort,

other species 1, other species 2

F IGURE 1 Structure of the river condition assessment: (a) Schematic of the three scales of spatial unit (module, subreach, reach) and their
relationship to the project site; (b) Flow diagram illustrating how the provisional condition score, estimated from field surveys of 5-module
subreaches is combined with the indicative river type estimated from a reach-scale desk study to assign a final condition score for each subreach
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submerged bed are termed “large rivers” and are surveyed using a

module length of 50 m. A 50 m module length is also used for canals

and navigable rivers. Once field surveys are uploaded, the information

system generates values of 35 indicators for each MoRPh5 subreach

from the field survey data (Table 2).

Three of the subreach indicators describe the river's bed material.

The values of these obtained for the coarsest surveyed subreach within

the project site are combined with five river type indicators extracted

from a desk-based assessment of the river reach containing the project

site to define an indicative river type (Section 4.1, Figure 1b).

TABLE 2 Indicators extracted from desk study and field survey data and used to estimate the indicative river type and preliminary river
condition for each subreach (Refer to Part 1 in Data S1 for definitions and formulations)

Indicator code Indicator name Source Used to assess

A1 Braiding index (BI) Desk study Indicative river type

A2 Sinuosity index (SI) Desk study Indicative river type

A3 Anabranching index (AI) Desk study Indicative river type

A4 Level of confinement (U, PC, C) Desk study Indicative river type

A5 Valley gradient Desk study Indicative river type

A6 Bedrock reaches Field survey Indicative river type

A7 Coarsest bed material size class Field survey Indicative river type

A8 Average alluvial bed material size class Field survey Indicative river type

B1 Bank top riparian vegetation structure (+) Field survey Preliminary river condition

B2 Bank top tree feature richness (+) Field survey Preliminary river condition

B3 Bank top water-related features (+) Field survey Preliminary river condition

B4 Bank top NNIPS cover (−) Field survey Preliminary river condition

B5 Bank top managed ground cover (−) Field survey Preliminary river condition

C1 Bank face riparian vegetation structure (+) Field survey Preliminary river condition

C2 Bank face tree feature richness (+) Field survey Preliminary river condition

C3 Bank face natural bank profile extent (+) Field survey Preliminary river condition

C4 Bank face natural bank profile richness (+) Field survey Preliminary river condition

C5 Bank face natural bank material richness (+) Field survey Preliminary river condition

C6 Bank face bare sediment extent (+) Field survey Preliminary river condition

C7 Bank face artificial bank profile extent (−) Field survey Preliminary river condition

C8 Bank face reinforcement extent (−) Field survey Preliminary river condition

C9 Bank face reinforcement material severity (−) Field survey Preliminary river condition

C10 Bank face NNIPS cover (−) Field survey Preliminary river condition

D1 Channel margin aquatic vegetation extent (+) Field survey Preliminary river condition

D2 Channel margin aquatic morphotype richness (+) Field survey Preliminary river condition

D3 Channel margin physical feature extent (+) Field survey Preliminary river condition

D4 Channel margin physical feature richness (+) Field survey Preliminary river condition

D5 Channel margin artificial features (−) Field survey Preliminary river condition

E1 Channel aquatic morphotype richness (+) Field survey Preliminary river condition

E2 Channel bed tree features richness (+) Field survey Preliminary river condition

E3 Channel bed hydraulic features richness (+) Field survey Preliminary river condition

E4 Channel bed physical feature extent (+) Field survey Preliminary river condition

E5 Channel bed physical feature richness (+) Field survey Preliminary river condition

E6 Channel bed material richness (+) Field survey Preliminary river condition

E7 Channel bed siltation (−) Field survey Preliminary river condition

E8 Channel bed reinforcement extent (−) Field survey Preliminary river condition

E9 Channel bed reinforcement material severity (−) Field survey Preliminary river condition

E10 Channel bed artificial features severity (−) Field survey Preliminary river condition

E11 Channel bed NNIPS extent (−) Field survey Preliminary river condition

E12 Channel bed filamentous algae extent (−) Field survey Preliminary river condition
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Thirty-two of the subreach indicators refer to different aspects of

the condition of the river and contribute to a provisional numerical

condition score for the subreach (Section 4.2, Figure 1b).

The provisional condition score for each subreach is then trans-

lated into a categorical final condition score (5-good, 4-fairly good,

3-moderate, 2-fairly poor, 1-poor), which takes account of what is

potentially attainable given the indicative river type within which the

project site is situated (Section 4.3, Figure 1b).

4.1 | Indicative river type

A geomorphologically-based assessment of river type is not a simple

process since river characteristics vary along a continuum. However,

knowledge of the broad geomorphic type of river is useful for defining

the physical habitat and vegetation structural assemblage that the

river may display when it is functioning naturally.

Thirteen of the river types (inspired by Rinaldi, Gurnell, González

del Tánago, Bussettini, & Hendriks, 2016) incorporated in the assess-

ment (Figure 2) are those geomorphic types that may be found within

England, including three multithread types that are rare under present

conditions but which occurred more widely in the past when human

(indirect) pressures and (direct) interventions were less intrusive.

Eight variables were used to assign an indicative geomorphic

river type within a decision tree (Figure 3). Five of the river type

indicators (Table 2) are derived from maps or digital elevation models

and aerial imagery: A1 – Braiding index; A2 – Sinuosity index; A3 –

Anabranching index; A4 – Level of valley confinement; A5 – Valley

gradient. The remaining three indicators (A6 – Bedrock reaches;

A7 – Coarsest bed material size class; A8 – Average alluvial bed

material size class) are drawn from the subreach survey revealing the

coarsest bed material, with the proviso that these three indicators, par-

ticularly A7, need to represent a natural component of the bed material

and not, for example, material that has been artificially introduced from

washed out reinforcement or other infrastructure, or as part of a pre-

existing “restoration” design. The formulations used to calculate each

indicator are reported in Supporting Information (Data S1) Part 1.

The decision tree (Figure 3) used to assign a river reach to a geo-

morphic type has been tested using a calibration data set (Section 5).

However, under some circumstances professional judgement may

suggest that the automatically-generated river type is inappropriate

for a valid geomorphological reason and a more suitable type may be

F IGURE 2 Thirteen indicative river types (A to M) that may be found in England, reflecting their bed material, planform, and valley
confinement. (Bed material size is indicated in an italic font with the most likely dominant type emboldened. The most likely level of valley
confinement is emboldened)
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selected. The rationale for this is that river classification is a challeng-

ing processes and automatic generation of a river type is only as good

as the decisions that drive it (Figure 3). In this case, the decision tree

has been designed specifically with the characteristics of English rivers

in mind. Furthermore, the indicative river type does not take account

of any human interventions that may have influenced river type indi-

cators A1 to A5, since the aim is to test whether the river is showing

appropriate physical characteristics given its current planform. This

limitation needs to be clearly understood by practitioners, because

indicators A1 to A5 may have been modified by human actions. In par-

ticular, sinuosity (A2) may have been modified through implementa-

tion of restorations that increase sinuosity or historical straightening

to improve drainage and flood conveyance that reduces sinuosity.

In addition to the 13 river types described above, “large rivers”

and “canals and navigable rivers” are included as two separate river

types because the bed and other submerged features cannot be sur-

veyed adequately and thus the preliminary condition score has to be

based on indicators that only refer to emergent features.

4.2 | Provisional condition score

Thirty two of the indicators (Table 2, indicators B1 to E12), known as

condition indicators, are extracted from the surveys for each subreach

and are used to calculate a preliminary condition score for the sub-

reach. These condition indicators characterize different aspects of the

condition of the bank tops (B1 to B5), bank faces (C1 to C10), channel

edge – water margin (D1 to D5), and channel bed (E1 to E12). Each

indicator summarizes either a potentially “natural” morphological, sed-

imentary or vegetation structural aspect (a positive indicator, marked

by [+] in Table 2) or an aspect of local human interventions and pres-

sures (a negative indicator, marked by [−] in Table 2). The information

system automatically assigns a score from 0 to 4 (positive indicators)

or 0 to −4 (negative indicators) once the subreach survey data have

been uploaded. The formulations used for this process are reported

in Part 1 in Data S1. These were developed initially from expert judge-

ments of likely scenarios and were then tested, and where necessary

fine-tuned, using a calibration data set of 40 MoRPh5 subreach

F IGURE 3 Decision tree used to assign a reach of an English river to an indicative river type using values of indicators A1 to A3 and A5 to A8
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surveys collected for this purpose from a diverse range of river types

with variable levels of channel engineering (Section 5).

It is important to stress that “natural” is a difficult term to apply to

any English river. As noted by Gurnell and Petts (2002, p. 582)

"the history of river channels in England…is one of pro-

gressive change from bedload-dominated wandering

channels in forested catchments to suspended-load

dominated, stable or incising, single thread channels.

The Neolithic and later phases of deforestation and

agricultural expansion and intensification were associ-

ated with soil erosion in the uplands and alluviation

of river corridors. Brown (1987) considered that the

resultant floodplain accretion and planform stabiliza-

tion established the channel character for the next

2000–3000 years. The modern era has been character-

ized by a period of channel incision induced by dams,

embanking, reafforestation, sediment-check structures,

urbanization, and sand and gravel extraction…"

(see also Brown et al., 2018; Downs & Gregory, 2004). Furthermore,

Brookes (1985, 1988) first reported the enormous extent of river

channelization in England and Wales (8,500 km of main river) and its

geomorphic impacts (Brookes, 1987) and later estimated 96% of low-

land rivers in SE England to be modified (Brookes, 1995). With these

constraints, we consider “natural function” as the river processes and

forms which result from contemporary, (and for a given study reach)

independent, catchment-driven hydrological, sedimentary, geomor-

phic and/or ecological processes. We identify as “natural” the physical

or vegetation-structural features that have at least in part been cre-

ated by such natural processes, even if they are also reflecting recov-

ery from human influences (which could be referred to as

“naturalized” over time as rivers adjust to new modified conditions via

natural processes). However, we have to accept that there may have

been some human influence (e.g., high silt loads from agricultural land

enabling silt-trapping and landform building by plants; modified chan-

nel dimensions leading to bank toe or side bar development, evolution

of mid-channel features, or development of tree “features” such as J-

shaped or leaning trees, and overhanging bank tops).

The Preliminary Condition Score for a MoRPh5 subreach is the sum

of the average score of the 19 positive condition indicators and the

average score of the 13 negative condition indicators (Table 2). Aver-

ages were used to give the groups of positive and negative characteris-

tics an equal weighting in the preliminary condition score. This is not to

say that all river types would be expected to score highly on all positive

condition indicators but that if a river shows good condition, it is

expected to score at an appropriate level for its river type on the condi-

tion indicators (see Section 4.3). The impact of negative indicators is

expected to be more uniform across river types, but this may not always

be the case. For example, artificial reinforcement may appear to offer no

change in the physical bank properties of a bedrock river, but it still

replaces the natural bank materials with other materials possessing dif-

ferent biogeochemical properties and thus providing different physical

habitats and ecological impacts (e.g., Francis & Hoggart, 2009). The

scores on each individual condition indicator provide insights into the

underlying causes of the preliminary condition score and identify where

damage to condition should be avoided (high positive condition indica-

tor scores) and where improvements in condition could be achieved

(low negative condition indicator scores, unexpectedly low positive con-

dition scores for the river type).

4.3 | Final condition score

The preliminary condition score for a subreach is translated into a

final condition score (5-good, 4-fairly good, 3-moderate, 2-fairly poor,

1-poor) according to the river type under consideration. The bound-

aries for translating preliminary condition scores into final condition

scores depend on determining the lowest and highest likely prelimi-

nary condition scores for each river type and then dividing the range

between these two extreme values into five numerical bands.

All river types are allocated the same lowest preliminary condition

score (−2.5) which assumes a fully reinforced river channel with bank

tops covered by buildings and transport infrastructure (i.e., no riparian

or in-channel vegetation or natural physical features). The maximum

value for each river type is calculated by assigning likely maximum

(expected) scores in the range 0 to +4 to the positive condition indica-

tors for that river type and assuming all negative indicators have a

zero score (Table 3, see Part 2 in Data S1 for large rivers and for navi-

gable rivers and canals). The likely maximum values of the preliminary

condition score for each river type were estimated to range from +1.8

(canals and navigable rivers) to +3.1 (river type I). Indeed meandering

river types G and I were judged to have the potential to achieve the

highest preliminary condition scores (respectively 3.0, 3.1) reflecting

their potential to display sediments of varying calibre, many different

in-channel and bank top physical features as well as structurally varied

in-channel and riparian vegetation.

Crucially, Table 3 (refer to Part 2 in Data S1 for large rivers and

navigable rivers and canals) also provides guidance on the maximum

scores that are likely to be achieved by a river of a specific type on

each of the positive condition indicators. This introduces a firm geo-

morphic underpinning, by ensuring that low scores on a positive con-

dition indicator can be interpreted either as “expected” for a given

river type or as the river not achieving its potential condition.

5 | TESTING THE METHODOLOGY

5.1 | Calibration data

A calibration data set was collected to support development and test-

ing of the river condition assessment tool and to illustrate its applica-

tion. The calibration data set includes information from sections of

20 rivers within which two adjacent subreaches (10 contiguous mod-

ules) were surveyed. By surveying 2 adjacent MoRPh5 subreaches, it

was possible to consider the degree to which adjacent subreaches

10 GURNELL ET AL.



TABLE 3 Likely maximum scores on positive condition indicators for river types A to M

Indicators A B C D E F G H I J K L M

COMMENTS

Note that apart from type A,
the river types from B to N
typically display a decrease in
gradient, bed material fining and
decreasing valley confinement

B1 Bank top riparian

vegetation structure

4 4 4 4 4 4 4 4 4 4 4 4 4 Complex bank top vegetation

structure should be achievable

on all rivers

B2 Bank top tree

feature richness

4 4 4 4 4 4 4 4 4 4 4 4 4 Varied tree features should be

achievable on all rivers

B3 Bank top water-

related features

1 1 1 1 1 2 2 2 2 4 3 3 4 Scores reduce with increasing

gradient (reflected in bed

material size) because of

changing tendency for

downslope drainage

C1 Bank face riparian

vegetation structure

2 2 2 2 3 3 3 3 3 3 4 4 4 Scores increase with reduced

confinement and decreased

calibre of bank materials

(rooting restricted in coarse

and unstable sediments)

C2 Bank face tree

feature richness

4 4 4 4 4 4 4 4 4 4 4 4 4 Varied tree features should be

achievable on all rivers

C3 Bank face natural

bank profile extent

4 4 4 4 4 4 4 4 4 4 4 4 4 All bank profiles should be

natural

C4 Bank face natural

bank profile richness

3 3 3 3 4 4 4 4 4 4 3 3 3 Largest potential range of

profiles in streams of

intermediate slope and

sediment calibre

C5 Bank face natural

bank material richness

4 4 4 4 3 3 3 2 2 2 1 1 1 Bank face materials increasingly

uniform as channel gradient

reduces

C6 Bank face bare

sediment extent

2 2 2 2 3 3 4 3 4 2 0 0 0 Confined streams likely to have

highest bare bank exposure

(intermediate score),

intermediate slope

meandering streams likely to

have good balance of

vegetated and unvegetated

banks (maximum score),

unconfined lowland streams

likely to have fully vegetated

banks (zero score)

D1 Channel margin

aquatic vegetation

extent

0 0 0 0 0 0 0 2 2 2 4 4 4 Extensive, aquatic vegetation

restricted to low gradient/low

energy streams

D2 Channel margin

aquatic morphotype

richness

0 0 0 0 0 0 0 2 2 2 3 3 3 Diverse, aquatic vegetation

restricted to low gradient/low

energy streams

D3 Channel margin

physical feature

extent

2 2 2 2 3 3 4 3 4 3 1 1 1 Widest diversity of features

likely in meandering streams

of intermediate sediment

calibre

D4 Channel margin

physical feature

richness

2 2 2 2 3 3 4 3 4 3 1 1 1 Intermediate gradient,

intermediate bed material

streams likely to have highest

richness, especially if they are

meandering

(Continues)
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within the same river reach may yield different condition assessments.

Aerial images and maps supported reach and subreach selection.

Twelve of the calibration river sections were selected because of

their apparent lack of human modification and to capture a wide range

of valley gradients and thus river energy conditions. The remaining

eight were selected to represent varying levels of channel reinforce-

ment as an indicator of human intervention.

Following field surveys, the 12 “near-natural” river sections were

labelled a to l in order of decreasing valley slope and bed material size

with a 1 or 2 appended to denote the two MoRPh5 subreaches. Three

of the river sections, representing steep, bedrock-boulder rivers, were

located in Wales because of ease of access, but similar river reaches

exist in England, notably in the Pennines and Lake District. The eight

“modified” river sections displaying bank and/or bed reinforcement

were labelled m to t in order of increasing reinforcement extent, with

full reinforcement of bed and banks at reach t. Again, a 1 or 2 was

appended to denote the two surveyed subreaches.

5.2 | Indicative river types

Values for indicators A1 to A6 were extracted for extended reaches

enclosing the pairs of surveyed subreaches. The reach scale indicators

were combined with subreach values of indicators A6, A7 and A8 to

illustrate the sensitivity of the estimated indicative river type to a

change in bed material. However, in practice, the indicative river type

should be determined using the coarsest values of A6, A7 and A8

found for any single surveyed subreach at a project site. Application

of the indicative river type decision tree (Figure 3) to each of the

20 reach and 40 subreach values of indicators A1 to A8, resulted in

the 24 near-natural subreaches (a1 to l2) being assigned to nine differ-

ent indicative river types (A, C, D, F, G, H, I, K, L), with a good repre-

sentation of types with different bed material and planform.

The missing types were those with very coarse bed material (B) and

with multi-thread forms (E, J, M), all of which are rare in England. A

narrower range of river types (F, H) were surveyed across the modi-

fied subreaches (m1 to t2), to some extent reflecting the fact that

reinforced reaches are also frequently straightened.

5.3 | River condition indicators

The river condition indicator scores for all of the 40 MoRPh5 calibration

subreaches are listed in Part 3 in Data S1. The separate average scores

for the positive and negative river condition indicators for the 40 sub-

reaches are shown in Figure 4a and the sum of these averages are pres-

ented in Figure 4b. These illustrate a general decline in the total,

positive and negative scores with decreasing valley gradient across the

near-natural rivers (a to l, Figure 4a). An increase in human pressures

and interventions is evident even in these near-natural examples as they

transition from more confined, steep, upland to unconfined, low gradi-

ent, lowland settings. The modified reaches generally display more

TABLE 3 (Continued)

Indicators A B C D E F G H I J K L M

COMMENTS

Note that apart from type A,
the river types from B to N
typically display a decrease in
gradient, bed material fining and
decreasing valley confinement

E1 Channel aquatic

morphotype richness

0 0 0 0 0 0 0 2 2 2 4 4 4 Diverse, aquatic vegetation

restricted to low gradient/

energy streams

E2 Channel bed tree

features richness

3 4 4 4 3 3 3 3 3 3 3 3 3 Little difference in potential, but

steep, coarse bed streams may

show higher wood retention

and root exposure

E3 Channel bed

hydraulic features

richness

3 4 4 4 3 3 3 3 3 2 1 1 1 Highest richness on coarse bed,

steep streams; negligible

richness on low gradient

fine-bed streams

E4 Channel bed physical

feature extent

2 4 4 4 3 3 3 2 2 1 0 0 0 Negligible extent on low

gradient, fine bed streams

E5 Channel bed physical

feature richness

2 4 4 4 3 3 3 2 2 1 0 0 0 Highest richness on coarse bed,

steep streams; negligible

richness on low gradient

fine-bed streams

E6 Channel bed material

richness

3 4 4 4 4 4 4 3 3 3 1 1 1 Lower richness on finer-bed

streams

Average 2.4 2.7 2.7 2.7 2.7 2.8 3.0 2.9 3.1 2.8 2.4 2.4 2.4
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severe average negative scores as their level of reinforcement increases

from river m to t, although there are fluctuations in the average negative

scores attributable to factors other than reinforcement extent. In many

cases the modified sites have quite high positive scores, reflecting the

presence of at least a partly-functioning riparian zone (none had heavily

developed bank tops) and also a range of naturally-formed sediment

and vegetation features within the channel despite the reinforcement.

Using the relevant ranges and thresholds for translating the

preliminary into the final condition assessment (Part 4 in Data S1),

Figure 4b and Table 4 present the final condition assessment for the

40 subreaches. Virtually all the near-natural subreaches (a1 to l2) attain

a “good” or “fairly good” final condition score (Figure 4b). Exceptions

are subreaches h2, j1, k1 and k2. However, the impact of human inter-

ventions is seen most strongly in the subreaches affected by reinforce-

ment (m1 to t2). None of these subreaches achieves better than a

“moderate” assessment. Half of the subreaches are assigned a score of

fairly poor or less, and the most heavily reinforced subreaches (t1, t2)

are classified as “poor” (Figure 4a).

The influence of the individual condition indicators on the final

condition scores is illustrated in Figure 5. Figure 5a presents the

difference between the observed subreach scores on each of the pos-

itive indicators and the likely maximum (expected) scores (Table 3) for

the relevant river type. Figure 5b presents the observed scores on

each of the negative indicators. In both Figures 5a and 5b a horizontal

line separates the natural (a1 to l2) from the increasingly reinforced

(m1 to t2) subreaches and vertical lines separate condition indicators

referring to the bank tops, bank faces, channel margin – water edge,

and channel bed. The two darkest shadings in Figures 5a and 5b indi-

cate, respectively, the most marked deviations below the expected

positive scores and the most severely negative scores. Several broad

trends can be identified from Figure 5.

The bank top indicators confirm comments previously made

about “natural” rivers in England. Virtually all the subreaches, including

those described as natural (a1 to l2), are affected by significant human

land cover management within 10 m of the bank top (Figure 5b, con-

dition indicator B5). This explains the degraded riparian vegetation

structure (Figure 5a, B1) and lack of bank top tree features (Figure 5a,

B2, indicative of naturally functioning riparian trees). The lack of even

a small (10 m) naturally-functioning riparian zone is a key factor in

preventing most subreaches from achieving their potential condition.

F IGURE 4 (a) The average values of the positive (grey bars) and negative (black bars) condition indicator scores for each of the 40 calibration
subreaches. (b) The preliminary condition scores (sum of the average positive and average negative indicator scores) for each of the 40 calibration
subreaches, plotted with respect to the five final condition scores (5-good, 4-fairly good, 3-moderate, 2-fairly poor, 1-poor) according to the river
type for each subreach (A to M, listed across the top of the graph)
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In addition, bank top water-related features (Figure 5a, B3, various

types of wetlands and ponds, side channels) are often removed by

land management practices and are extremely rare across all calibra-

tion sites. Their absence does not depress the overall condition of

the steeper, more confined river types (A to D) where such features

are unlikely to be widely encountered. However, such features are

increasingly expected of naturally-functioning systems as river gradi-

ent and lateral dynamics decline (Table 3) and yet few water-related

bank top features were observed.

There are also indications of human impacts within the river

channel (bank faces and bed) across many subreaches. Many show

degraded tree features within the channel (i.e., on the bank faces

[Figure 5a, C2] and bed [Figure 5a, E2]), although bank face degradation

of tree features is most noticeable in reinforced subreaches. This degra-

dation results from both direct human interventions within the channel

(pruning/removing trees, removing large wood) and the lack of a natu-

rally functioning riparian zone to supply in-channel shade, trailing bra-

nches, marginal exposed roots and large wood (Grabowski et al., 2019).

Furthermore, siltation (Figure 5b, E7 – superficial drapes of fine sedi-

ment around and over coarser bed material particles) is widespread

(Wood & Armitage, 1999). This reflects excess fine sediment supply

to the river, particularly from arable agriculture, stock trampling close

to river margins, and outfalls (Jarritt & Lawrence, 2007; Owens

et al., 2005; Wohl, 2015).

Focusing on the remaining bank face, margin, and bed indicators,

some further clear trends emerge. The natural subreaches (a1 to l2)

show notably fewer scores of −2 or lower on the negative condition

indicators (Figure 5b) and fewer falling below expected scores for their

river type (i.e., deviations of 2 or more) on the remaining positive condi-

tion indicators (Figure 5a). Furthermore, scores on the negative indica-

tors tend to decrease and scores on the positive condition indicators

increasingly fall below their expected values as reinforcement increases,

although there are some notable deviations and the most pronounced

can be explained by human activities. The most reinforced river chan-

nels (Figure 5b, C8, C9, E8, E9) are frequently fenced off and, when

located in urban parks, often have bank tops subject to reduced vegeta-

tion management, allowing a relatively unmanaged strip of riparian veg-

etation to develop (Figure 5a, B1, subreaches r1, r2, s1, s2, t1, t2). This

strip can provide bank top (Figure 5a, B2) and in-channel (Figure 5a, E2)

tree features. It can also hide developing in-channel features from view

enabling patches of bed material of different calibre (Figure 5a, E6, often

overlying a reinforced bed) and areas (Figure 5a, E4) and different types

(Figure 5a, E5) of depositional bed features to develop. Such developing

features are further enhanced as reinforcement ages and, in parallel with

other artificial in-channel features (Figure 5b, E10), drives more diverse

flow patterns (Figure 5a, E3) that can further support landform develop-

ment and vegetation colonization within the channel.

The condition indicator scores for any particular subreach help

to explain the final condition score and thus support the design of

approaches aimed at improving river condition. Greater detail on each

condition indicator score can be extracted from the raw field surveys,

which are particularly important for supplying geomorphologically-

relevant characteristics that can help to interpret key local processes.T
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6 | DISCUSSION

6.1 | Contribution and potential refinement of the
river condition assessment tool

The Biodiversity Metric 2.0 (BM2) is currently at the beta testing

stage with the intention of final release in December 2020 followed

by a review every 5 years. Therefore, the river condition assessment

tool that is reported here may undergo minor adjustments based on

feedback from users and analysis of the data they gather. However,

the broad approach to assessing river condition is stable.

The tool was designed for a specific purpose: to provide an

assessment of river condition at a project site as a part of BM2. Thus,

the aim was to produce a single habitat-based river condition score

(the final condition score) that could contribute to an integrated

terrestrial-riparian-aquatic assessment of a project site and to moni-

toring the initial status of the site and the effects of design implemen-

tation and subsequent recovery.

F IGURE 5 Performance of the 40 calibration subreaches in relation to the river condition indicators. (a) Difference between each observed
positive river condition indicator score and the likely maximum (expected) scores for the appropriate river type. (b) Observed negative river
condition indicator scores (NNIPS refers to non-native invasive plant species)
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To achieve these aims, the tool had to be straightforward to apply

by environmental professionals who were unlikely to be specialist geo-

morphologists, and so a bottom-up approach was devised that integrates

a desk study with field surveys. The approach was designed to capture

all aspects of the river physical environment necessary for a thorough

inventory of the habitats present and their condition at a single spatial

resolution. At the same time, the field survey captures many additional

properties that can inform process assessment by geomorphology spe-

cialists who may be involved in project delivery. However, it is important

to repeat that the system does not aim to provide a full analysis of geo-

morphological processes, but to bridge the gap between a simple habitat

assessment and an assessment of geomorphic condition, thus raising

awareness across a wider community of environmental professionals

and supporting the integrated analysis of these critical factors for longer

term ecological resilience. Full analysis and interpretation of geomorpho-

logical processes requires additional data (Section 6.2), training and

experience. For instance, restoration designs may require hydraulic and

sedimentological modelling, demanding a sound theoretical understand-

ing of sediment transport processes, together with modelling expertise

and detailed topographic data.

Because there is potential for future fine-tuning of the method as

further experience is gained from the tool's application, it may be nec-

essary to revisit one or more of the following: some elements of the

river type decision tree, the computation of the scores assigned to

some of the individual condition indicators (B1 to E12), the relative

weighting of the condition indicators in the computation of the prelim-

inary condition score, and the definition of the preliminary condition

score numerical boundaries that are applied to different river reach

types to generate the final condition score for a subreach. Neverthe-

less, the broad approach to river condition assessment will be retained.

6.2 | Embedding the river physical condition
methodology into a hierarchical framework for
hydromorphological assessment and management

While the river condition methodology was devised for a specific pur-

pose, to deliver a habitat-based assessment of river condition, the data

and outputs can contribute to broader and more specialist assessments

of the river environment. In particular, they can provide fine spatial-

scale contributions to integrated geomorphological analysis. Spatial and

temporal hierarchical approaches to integrating hydrogeomorphological

information are fundamental to diagnosing the degree of natural func-

tioning of river systems; the level and nature of constraints imposed

by human pressures and interventions; the nature and causes of

any temporal trajectories of change exhibited by the river; and the

likely response of a river to future scenarios (Brierley & Fryirs, 2016;

Gurnell et al., 2016; Gurnell, Rinaldi, Buijse, Brierley, & Piégay, 2016;

Rinaldi et al., 2017).

At a subreach scale there are numerous methods available to assess

physical habitat (e.g., RHS, Raven et al., 1997; Raven, Boon, Dawson, &

Ferguson, 1998) and geomorphic features (e.g., GUS, Belletti et al., 2017),

but these methods typically address longer subreaches than a MoRPh5

survey and are usually narrower in scope. Furthermore, given the cost of

field survey, the advantage of surveys similar to MoRPh are that they are

designed to be applicable by river professionals who may not be geomor-

phology specialists, and within many contexts can complement data that

is being collected by appropriately trained citizen scientists. Indeed, the

MoRPh surveywas originally devised for application by trained volunteers

(Gurnell et al., 2019), illustrating the potential, with appropriate quality-

control, for substantial data sets to be assembled. TheMoRPhmodule sur-

vey and its aggregation into subreaches (e.g., 5 or 10 contiguous MoRPh

surveys) captures many properties that can support geomorphological

interpretation within an appropriate spatial hierarchical framework

of data gathering (e.g., England & Gurnell, 2016). The compatibility of the

river condition assessment with a citizen science survey methodology

(Gurnell et al., 2019; Shuker et al., 2017) additionally enables monitoring

over longer timeframes at sites where there may be public interest in out-

comes of river works. This helps to address the deficit of longer-term habi-

tat and geomorphological monitoring and supports assessment of physical

channel responses to human interventions and changing processes.

The MoRPh survey generates significant geomorphological infor-

mation within subreaches that can contribute to reach scale analyses.

This includes the presence of natural (bank erosion, tributary junc-

tions) and artificial (pipes, land cover) points of sediment delivery to

the river; in-channel locations and calibre of sediment storage (bed sil-

tation, bars, berms, benches); indicators of natural function (bank pro-

files indicative of different types/rates of bank failure, assemblages of

geomorphic features and tree features within and around the channel;

and indicators of channel adjustment such as channel dimensions

(evidence of over-deepening), bank sedimentary structure (evidence

of bed incision), eroding and aggrading banks (evidence of channel

migration, widening, narrowing), J-shaped, falling and fallen trees (evi-

dence of bank instability, further evidence of channel migration and

widening). Such information on geomorphic character and dynamics

but also on human interventions at the subreach scale can aid inter-

pretation of the indicative, reach scale, river type and its geomorphic

function. Thus MoRPh survey data can complement outputs from

reach-scale assessments such as: assessments of geomorphic condi-

tion, function and dynamics (e.g., MQI, MDI, Rinaldi, Surian, Comiti, &

Bussettini, 2015); walk-over surveys identifying sediment sources and

sinks (e.g., Fluvial audit, Sear, Newson, & Brookes, 1995); desk studies

of contemporary floodplain geomorphic features; and historical ana-

lyses of channel planform and style change. A combination of avail-

able data at complementary scales aids in-depth assessment of

whether a river is functioning according to its type and whether it is

showing evidence of shorter- or longer-term geomorphic adjustment

and/or human suppression-degradation of geomorphic processes.

6.3 | Potential of the river condition assessment
methodology to support other river characterisation,
assessment, and management issues

In addition to contributing to the assessment of physical habitat and

geomorphological condition and function, the multi-scale nature of the
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river condition assessment tool has enormous potential for integration

with the chemical and biological characteristics of rivers. Such spatio-

temporal linkages between river morphology and both water quality

and biota have long been proposed and explored (e.g., Clarke, Bruce-

Burgess, & Wharton, 2003; Doyle & Stanley, 2006; Padmore, 1998;

Petts, 1984; Petts & Amoros, 1996; Southwood, 1977; Sullivan,

Watzin, & Hession, 2004; Townsend & Hildrew, 1994; Vaughan, 2010;

Wolter, Buijse, & Parasiewicz, 2015). However, establishing precise

causal links in ecological restoration between habitat heterogeneity and

biodiversity has proved difficult (Lepori, Palm, Brännäs, & Malmqvist,

2005; Palmer, Menninger, & Bernhardt, 2010) not least because of

the varying space–time scales employed in monitoring (Vaughan

et al., 2009).

The spatial scale of the MoRPh module was deliberately selected to

be appropriate for physical habitat characterisation at biological moni-

toring sites, particularly sites used for monitoring macroinvertebrates.

Indeed, the characterisation provided by a MoRPh module survey can

guide the selection of habitats and the relative sampling effort incorpo-

rated into kick-sampling at a monitoring site. For characterising habitat

available to mobile species, a subreach survey is appropriate. While five

contiguous MoRPh surveys should capture most physical habitats,

10 contiguous MoRPh surveys gives an even more thorough assess-

ment and can support more reliable estimation of the spacing/frequency

of key features such as pools, riffles, side and mid-channel bars. In addi-

tion, in as far as channel complexity can influence water quality, a reach

scale analysis of river type supported by subreach assessments of

channel-vegetation morphology, would be appropriate for comparison

with water quality assessments.

7 | SUMMARY AND CONCLUSIONS

In this paper we have presented a method devised for the operational

assessment of river condition, which can be applied by river profes-

sionals who may not be specialist geomorphologists. This tool has

been designed for application to the river landscapes encountered in

England as part of BM2, a method for the evaluation and monitoring

of development sites. The river condition assessment tool has been

tested on a calibration data set of 20 river reaches and 40 subreaches

representing the range of near-natural river styles present within

England as well as the effects of progressive human intervention

through channel reinforcement. Although some aspects of the method

may be fine-tuned as experience is gained in its application, the funda-

mental approach and structure are stable.

Although fundamentally a habitat assessment tool, as was required

for inclusion in BM2, the river condition assessment is founded on key

concepts and scientific principles in order to bridge the gap between

habitat and geomorphic condition assessment:

1. It includes a bottom-up, multi-scale approach.

2. It links condition assessment explicitly to geomorphic river type.

3. It defines how each river type, when in good condition, can be

expected to score on different condition indicators.

4. It provides field survey data on a variety of river physical proper-

ties that are indicative of the types and rates of geomorphological

processes that are operating.

Beyond BM2, the method provides information to support

river geomorphological and biological monitoring and assessments.

Because it utilizes a field survey designed for application by trained

citizen scientists, the reservoir of MoRPh data is rapidly growing and

it is providing a valuable tool in communicating the physical function-

ing of rivers. In the context of river condition assessment for BM2,

the field survey and the entire assessment tool are being applied by

surveyors with a wide range of disciplinary backgrounds. This is pro-

viding a pathway to expanding knowledge and understanding of the

importance of physical habitat forms, processes, turnover and trajec-

tories for river habitat condition to new professional audiences.
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