19 research outputs found

    Characteristics of the nuclear (18S, 5.8S, 28S and 5S) and mitochondrial (12S and 16S) rRNA genes of Apis mellifera (Insecta: Hymenoptera): structure, organization, and retrotransposable elements

    Get PDF
    As an accompanying manuscript to the release of the honey bee genome, we report the entire sequence of the nuclear (18S, 5.8S, 28S and 5S) and mitochondrial (12S and 16S) ribosomal RNA (rRNA)-encoding gene sequences (rDNA) and related internally and externally transcribed spacer regions of Apis mellifera (Insecta: Hymenoptera: Apocrita). Additionally, we predict secondary structures for the mature rRNA molecules based on comparative sequence analyses with other arthropod taxa and reference to recently published crystal structures of the ribosome. In general, the structures of honey bee rRNAs are in agreement with previously predicted rRNA models from other arthropods in core regions of the rRNA, with little additional expansion in non-conserved regions. Our multiple sequence alignments are made available on several public databases and provide a preliminary establishment of a global structural model of all rRNAs from the insects. Additionally, we provide conserved stretches of sequences flanking the rDNA cistrons that comprise the externally transcribed spacer regions (ETS) and part of the intergenic spacer region (IGS), including several repetitive motifs. Finally, we report the occurrence of retrotransposition in the nuclear large subunit rDNA, as R2 elements are present in the usual insertion points found in other arthropods. Interestingly, functional R1 elements usually present in the genomes of insects were not detected in the honey bee rRNA genes. The reverse transcriptase products of the R2 elements are deduced from their putative open reading frames and structurally aligned with those from another hymenopteran insect, the jewel wasp Nasonia (Pteromalidae). Stretches of conserved amino acids shared between Apis and Nasonia are illustrated and serve as potential sites for primer design, as target amplicons within these R2 elements may serve as novel phylogenetic markers for Hymenoptera. Given the impending completion of the sequencing of the Nasonia genome, we expect our report eventually to shed light on the evolution of the hymenopteran genome within higher insects, particularly regarding the relative maintenance of conserved rDNA genes, related variable spacer regions and retrotransposable elements

    Molecular weight distributions in emulsion polymerizations: Evidence for coagulative nucleation

    No full text
    An examination of the number molecular weight distribution from emulsion polymerizations, obtained by using gel permeation chromatography, shows that, at low conversion, a distinct maximum is present at low molecular weights, while at higher molecular weights the distribution is exponential with decay constant given by the ratio of the rate coefficients of propagation and transfer. The maximum is attributed to coagulation of precursor particles during particle formation

    Speed and selection in the evolution of killer-cell immunoglobulin-like receptors

    No full text
    The killer-cell immunoglobulin-like receptors (KIR) form a diverse family of receptors that control the functions of natural killer cells. Sequencing of KIR from primates has revealed the unexpected extent to which this gene family has diversified mostly likely in response to pathogens and to pathogen-mediated selection of their MHC class I ligands. Human KIR diversity is now a burgeoning area for disease association studies. This review examines the evolution of KIR from a primate-centric view in order to rationalize our current knowledge of the diversity of human KIR
    corecore