769 research outputs found
Performance comparison of point and spatial access methods
In the past few years a large number of multidimensional point access methods, also called
multiattribute index structures, has been suggested, all of them claiming good performance. Since no
performance comparison of these structures under arbitrary (strongly correlated nonuniform, short
"ugly") data distributions and under various types of queries has been performed, database
researchers and designers were hesitant to use any of these new point access methods. As shown in
a recent paper, such point access methods are not only important in traditional database applications.
In new applications such as CAD/CIM and geographic or environmental information systems, access
methods for spatial objects are needed. As recently shown such access methods are based on point
access methods in terms of functionality and performance. Our performance comparison naturally
consists of two parts. In part I we w i l l compare multidimensional point access methods, whereas in
part I I spatial access methods for rectangles will be compared. In part I we present a survey and
classification of existing point access methods. Then we carefully select the following four methods
for implementation and performance comparison under seven different data files (distributions) and
various types of queries: the 2-level grid file, the BANG file, the hB-tree and a new scheme, called
the BUDDY hash tree. We were surprised to see one method to be the clear winner which was the
BUDDY hash tree. It exhibits an at least 20 % better average performance than its competitors and is
robust under ugly data and queries. In part I I we compare spatial access methods for rectangles.
After presenting a survey and classification of existing spatial access methods we carefully selected
the following four methods for implementation and performance comparison under six different data
files (distributions) and various types of queries: the R-tree, the BANG file, PLOP hashing and the
BUDDY hash tree. The result presented two winners: the BANG file and the BUDDY hash tree.
This comparison is a first step towards a standardized testbed or benchmark. We offer our data and
query files to each designer of a new point or spatial access method such that he can run his
implementation in our testbed
Locality of Corner Transformation for Multidimensional Spatial Access Methods
AbstractThe geometric structural complexity of spatial objects does not render an intuitive distance metric on the data space that measures spatial proximity. However, such a metric provides a formal basis for analytical work in transformation-based multidimensional spatial access methods, including locality preservation of the underlying transformation and distance-based spatial queries. We study the Hausdorff distance metric on the space of multidimensional polytopes, and prove a tight relationship between the metric on the original space of k-dimensional hyperrectangles and the standard p-normed metric on the transform space of 2k-dimensional points under the corner transformation, which justifies the effectiveness of the transformation-based technique in preserving spatial locality
Magnetic field of Mercury confirmed
A contention that Mercury possesses an intrinsic magnetic field sufficient to deflect the solar wind flow was confirmed by the Mariner 10 experiment. Predictions made as to the locations where characteristic bow shock and magnetopause boundaries may be observed were also confirmed
Observations of Mercury's magnetic field
Magnetic field data obtained by Mariner 10 during the third and final encounter with the planet Mercury on 16 March 1975 were studied. A well developed bow shock and modest magnetosphere, previously observed at first encounter on 29 March 1974, were again observed. In addition, a much stronger magnetic field near closest approach, 400 gamma versus 98 gamma, was observed at an altitude of 327 km and approximately 70 deg north Mercurian latitude. Spherical harmonic analysis of the data provide an estimate of the centered planetary magnetic dipole of 4.7 x 10 to the 22nd power Gauss/cu cm with the axis tilted 12 deg to the rotation axis and in the same sense as Earth's. The interplanetary field was sufficiently different between first and third encounters that in addition to the very large field magnitude observed, it argues strongly against a complex induction process generating the observed planetary field. While a possibility exists that Mercury possesses a remanent field due to magnetization early in its formation, a present day active dynamo seems to be a more likely candidate for its origin
Recommended from our members
Testing for Time Stochastic Dominance
We propose nonparametric tests for the null hypothesis of time stochastic dominance. Time stochastic dominance makes a partial order of different prospects over time based on the net present value criteria for general utility and time discount function classes. For example, time stochastic dominance can be used for ranking investment strategies or environmental policies based on the expected net present value of the future benefits. We consider an Lp integrated test statistic and derive its large sample distribution. We suggest a path-wise bootstrap procedures that allows for time dependence in a panel data structure. In addition to the least favorable case based bootstrap method, we describe two approaches, the contact-set approach and the numerical delta method, for the purpose of enhancing a power of the test. We prove the asymptotic validity of our testing procedures. We investigate the finite sample performance of the tests in simulation studies. As an illustration, we apply the proposed tests to evaluate the welfare improvement of the Thailand’s Million Baht Village Fund Program
The magnetic field of Mercury, part 1
An updated analysis and interpretation is presented of the magnetic field observations obtained during the Mariner 10 encounter with the planet Mercury. The combination of data relating to position of the detached bow shock wave and magnetopause, and the geometry and magnitude of the magnetic field within the magnetosphere-like region surrounding Mercury, lead to the conclusion that an internal planetary field exists with dipole moment approximately 5.1 x 10 the 22nd power Gauss sq cm. The dipole axis has a polarity sense similar to earth's and is tilted 7 deg from the normal to Mercury's orbital plane. The magnetic field observations reveal a significant distortion of the modest Hermean field (350 Gamma at the equator) by the solar wind flow and the formation of a magnetic tail and neutral sheet which begins close to the planet on the night side. The composite data is not consistent with a complex induction process driven by the solar wind flow
Interaction of solar wind with Mercury and its magnetic field
A brief review is presented of magnetic field and solar wind electron observations by Mariner 10 spacecraft. The intrinsic magnetic field of the planet Mercury and the implications of such a field for the planetary interior are also discussed
Magnetic field observations near Mercury: Preliminary results from Mariner 10
Results are presented from a preliminary analysis of data obtained near Mercury by the NASA/GSFC Magnetic Field Experiment on Mariner 10. A very well developed, detached bow shock wave, which developed as the super-Alfvenic solar wind interacted with the planet Mercury was observed. A magnetosphere-like region, with maximum field strength of 98 gamma at closest approach (704 km altitude) was also observed, and was contained within boundaries similar to the terrestrial magnetopause. The obstacle deflecting the solar wind flow was global in size, but the origin of the enhanced magnetic field was not established. The most plausible explanation, considering the complete body of data, favored the conclusion that Mercury has an intrinsic magnetic field
- …