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TESTING FOR TIME STOCHASTIC DOMINANCE

KYUNGHO LEE, OLIVER LINTON, AND YOON-JAE WHANG

Abstract. We propose nonparametric tests for the null hypothesis of time stochastic

dominance. Time stochastic dominance makes a partial order of different prospects over

time based on the net present value criteria for general utility and time discount func-

tion classes. For example, time stochastic dominance can be used for ranking investment

strategies or environmental policies based on the expected net present value of the future

benefits. We consider an Lp integrated test statistic and derive its large sample distribu-

tion. We suggest a path-wise bootstrap procedures that allows for time dependence in

a panel data structure. In addition to the least favorable case based bootstrap method,

we describe two approaches, the contact-set approach and the numerical delta method,

for the purpose of enhancing a power of the test. We prove the asymptotic validity of

our testing procedures. We investigate the finite sample performance of the tests in sim-

ulation studies. As an illustration, we apply the proposed tests to evaluate the welfare

improvement of the Thailand’s Million Baht Village Fund Program.

1. Introduction

Decisionmakers and academics often have to compare different projects that contain

both risk (uncertain outcomes) and outcomes realized at different time periods. Ex-

amples include investment decisions, environmental policies, a microfinance program for

improvement of living standards, an R&D investment aimed at increasing in productivity,

a human-capital investment and numerous others. In the intertemporal choice literature,

Net Present Value (NPV) is the cornerstone of comparing dynamic welfare outcomes

and for making an ordering of the prospects. Most analyses depend on specific para-

metric utility functions to account for risk and specific time-discounting when comparing

NPV’s. This is problematic for three reasons. First, comparisons are usually sensitive

to assumptions about risk preferences, Mehra and Prescott (1985). Second, specifying

the discounting function is also important but controversial, see Cohen, Ericson, Laibson,
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and White (2020), and can lead to different orderings.1 Finally, specific utility and time-

discounting assumptions only reflect a very small part of potential preferences, so forging

a general consensus on an ordering, and hence the appropriate course of action, cannot

be achieved.

Dietz and Matei (2016) introduced the Time Stochastic Dominance (TSD) concept as

a general framework for comparing choices with both timing elements and risk. This

approach combines the pure time specific Stochastic Dominance (SD) framework, Levy

(1973, 1998), with the Time Dominance paradigm, Ekern (1981). TSD provides a partial

order to rank different distributions over time by comparing their NPV under general

assumptions on both the utility function and the time discount function. By allowing a

general class of utility functions, which may contain the widely used CRRA class, and

a general class of time discount functions, which may contain the widely used discount

functions such as the exponential or the hyperbolic discount functions, TSD allows for a

consensus view among economic agents with a general preference structure over uncertain

portfolios or policies.

The goal of this paper is to develop a nonparametric testing procedure for the null

hypothesis of time stochastic dominance. Despite its usefulness, to the best of our knowl-

edge, a formal statistical inference method for TSD has not been available in the literature.

This paper considers an Lp-type test statistic and suggests bootstrap methods to compute

critical values and proves their asymptotic validity.

Our paper contributes to a big literature on SD testing. McFadden (1989) introduces

Kolmogorov-Smirnov type nonparametric test of first and second order SD hypotheses.

After the pioneering work of McFadden (1989), Klecan, McFadden and McFadden (1991),

Kaur, Prakasa Rao, and Singh (1994), Anderson (1996) and Davidson and Duclos (2000)

also propose different approaches to SD testing. Barrett and Donald (2003) suggest a

consistent bootstrap method to test an arbitrary SD order between two prospects under

the assumption of i.i.d data and mutually independent prospects or outcomes. Linton,

Maasoumi, and Whang (2005, hereafter LMW) show a consistent subsampling method

testing for SD under general sampling scheme, which allows time series dependency in

the data and mutual dependence between the outcomes as well as allowing for estimated

finite-dimensional parameters. Linton, Song and Whang (2010, hereafter LSW) propose
1For example, Stern (2007), Nordhaus (2007) and Weitzman (2007) debate sensitivity of discounting
factor assumptions in a context of assessing environmental damages.
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an improved inference method for SD tests based on contact set estimation, at the same

time they allowed for nonparametric and parametric components in the DGP. Whang

(2019) contains a comprehensive survey of the SD testing literature. However, none of

these papers addresses the issue raised by time discounting, which means the economic

interpretation of any ordering is confined to static comparisons.

Our paper describes three methods for calculating a critical value. We first suggest the

conventional approach for estimating critical values that imposes the least favorable case

(LFC) of the null hypothesis to mimic the asymptotic distribution of the test statistic.

However, imposing LFC for every time period is too conservative in our dynamic setting.

To overcome it, we estimate the contact set, where the asymptotic distribution of the test

statistic does not degenerate under the null hypothesis, to imitate the limiting distribution

more directly. In addition, we describe the numerical delta method suggested by Hong

and Li (2018) as an alternative procedure.

Our sampling scheme is suitable for a panel data structure. We employ a bootstrap

procedure that resamples a time path in order to allow for general individual time depen-

dence. Because panel data is essential for catching individual dynamics, our test is widely

applicable for various empirical analyses. For instance, in the development economics

literature, many researchers are interested in a certain policy’s long-run impact, such as

the welfare improvement, so they employ data that tracks individuals or households over

a long period.

Our paper considers the case where prospects depend on unknown parameters. For

example, residuals from some estimated model can be a testing object. Testing for residual

TSD is very useful for policy makers to concentrate on an outcome of interest because it

enables them to control systematic differences between prospects. For instance, the effect

of a subsidy policy for electric vehicles to lower regional air pollution level depends on

certain local characteristics, such as power plant location, source of electricity generation,

and an automobile composition in town.2 In this case, the residuals from regressing

assessed regional air pollution damage on such covariates are necessary for comparing the

environmental benefits of two policies.

We conduct Monte Carlo simulations to evaluate the finite sample performance of our

proposed methods. In addition to the power and size-control property, our particular

2Holland et al. (2016) discuss the importance of local factors on the environmental policy evaluation.
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interest is the impact of the time order on the testing results. As the time order becomes

higher, the set of compatible time preferences become narrower i.e., the time preference

requires more conditions. We evaluate whether restricting preferences are well reflected

in our testing.

As an illustration, we apply our testing to evaluate the impact of Thailand’s Million

Baht Village Fund Program on dynamic welfare. By using our test, policy makers can

have a general consensus on a policy that pursues a long-term goal such as development

of the local economy.

The rest of this paper is organized as follows: In Section 2, we give definitions of TSD,

and introduce hypotheses of interest. In Section 3, we suggest test statistics and prove

its asymptotic properties. In Section 4, we give bootstrap inference procedures and prove

asymptotic validity. In Section 5, we describe numerical delta method suggested by Hong

and Li (2018) as an alternative inference method. In Section 6, we conduct Monte Carlo

experiments for evaluating finite sample performance. In Section 7, as an illustration,

we evaluate the welfare improvement of Thailand’s Million Baht Village Fund Program.

Concluding remarks are in Section 8.

2. Time Stochastic Dominance and The Hypotheses of Interest

2.1. Time Stochastic Dominance. Let X1 := {X1t : t ∈ T } and X2 := {X2t : t ∈ T }

be two prospects that yield random cash flows realizations over time. We regard them as

stochastic processes indexed by t ∈ T . For simplicity, we assume that X1t and X2t have

the common support X = [x, x̄] for all t ∈ T .3 The concept of TSD can be defined both

in continuous time with T = [0, T ], and in discrete time with T = {0, 1, .., T}, see Ekern

(1981) and Dietz and Matei (2016) for details. For brevity, we introduce the concept in

the case of discrete time.

Let fk(·, t) and Fk(·, t) :=
∫ ·
x fk(z, t)dz denote the density and distribution function,

respectively, of Xkt for k = 1, 2 and t ∈ T . Let u : X 7→ R be a utility function and

v : T 7→ R be a time-discount function. Both functions v and u are assumed to be

continuously differentiable. The expected discounted utility of the prospect Xk at t = 0

3The assumption of compact support is for simplicity. We may allow it to be unbounded by introducing
a weight function in the definition of the test statistics discussed below, see Linton, Song and Whang
(2010). Also, the support may be allowed to depend on t.
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is given by

NPVv,u(Xk) :=
T∑
t=0

v(s)EFu(Xkt) =
T∑
t=0

v(t)
 ∫
X
u(x)fk(x, t)dx

,
which depends on the flow utility u, the discount function v and the distribution of the

outcomes. Individuals are assumed to rank projects or outcomes rationally according to

the values of NPVv,u(Xk), k = 1, 2.

Define the nested classes of utility functions U1 = {u : u(1)(x) ≥ 0} and U2 = {u : u ∈

U1, u
(2)(x) ≤ 0}, where u(s), s ∈ Z+ denote the s-th order derivative of u. More generally,

the higher-order utility function classes are defined recursively as Um = {u : u ∈ Um−1,

(−1)mu(m)(x) ≤ 0} for m ≥ 2. Note that U1 corresponds to the classes of monotonically

increasing utility functions, while U2 corresponds to those of monotonically increasing

and concave utility functions associated with risk averse behavior. The commonly used

CRRA class is in U2.

Next, we define classes of discount functions. Let v0(t) = v(t) and vn(t) = vn−1(t +

1) − vn−1(t) for n ∈ Z+. Define V0 = {v : v(0) = 1, v(t) ≥ 0 for t = 0, . . . , T},

V1 = {v : v ∈ V0, v(t + 1) − v(t) ≤ 0 for t = 0, . . . , T − 1}, and V2 = {v : v ∈ V1,

v(t + 2) − v(t + 1) ≥ v(t + 1) − v(t) for t = 0, . . . , T − 2}. More generally, define

Vn = {v : v ∈ Vn−1, (−1)nvn(t) > 0} for n ≥ 1. The class V0 consists of all strictly

positive discount functions, which is not restrictive because there is always some positive

degree of time preference, however small. The class V1 comprises strictly decreasing

discount functions, representing impatience over time. On the other hand, V2 is the

class of strictly decreasing and convex discount functions, according to which impatience

decreases over time. Note that V2 contains exponential and hyperbolic discount functions,

both of which are widely used throughout the economics literature.

Define the differences

D(1,1)(x, t) := F
(1,1)
1 (x, t)− F (1,1)

2 (x, t), where

F
(1,1)
k (x, t) := ∑t

s=0 Fk(x, s) = ∑t
s=0

∫ x
x fk(z, s)dz,

for k = 1, 2 and (x, t) ∈ X ×T . The next definition relates the unobservable utility based

comparison to a comparison of the observable distributions.

Definition 1. X1 First order Time and First order Stochastic Dominates X2, denoted

as X1 �1T1SD X2, if and only if,
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(a) NPVv,u(X1)−NPVv,u(X2) ≥ 0,∀(v, u) ∈ V1 × U1, or

(b) D(1,1)(x, t) ≤ 0, ∀(x, t) ∈ X × T .

To denote higher order of time stochastic dominance, for integers m ≥ 2, n ≥ 1 and

k = 1, 2, define the following integral:

F
(n,m)
k (x, t) =

∫ x

x
F

(n,m−1)
k (z, t)dz =

t∑
s=0

F
(n−1,m)
k (x, s) =

t∑
s=0

∫ x

x
F

(n−1,m−1)
k (z, s)dz

for (x, t) ∈ X × T , with the convention that F (0,1)
k = Fk. Using integration by parts, we

can establish the following result:

F
(n,m)
k (x, t) :=

t∑
s=0

(t− s+ 1)n−1
∫ x

x

(x− z)m−11{z ≤ x}
(m− 1)! dFk(z, s). (2.1)

Define

D(n,m)(x, t) := F
(n,m)
1 (x, t)− F (n,m)

2 (x, t)

for (x, t) ∈ X ×T . Definition 1 can be generalized to higher-order dominance (Dietz and

Matei (2016, Proposition 5)):

Definition 2. X1 n-th order Time and m-th order Stochastic Dominates X2, denoted

as X1 �nTmSD X2, if and only if,

(a) NPVv,u(X1) ≥ NPVv,u(X2), ∀(v, u) ∈ Vn × Um, or

(b) (i) D(i+1,j+1)(x̄, T ) ≤ 0; (ii) D(n,j+1)(x̄, t) ≤ 0 ∀t ∈ T ; (iii) D(i+1,m)(x, T ) ≤ 0

∀x ∈ X ; (iv) D(n,m)(x, t) ≤ 0 ∀(x, t) ∈ X × T , where i ∈ {0, . . . , n − 1} and

j ∈ {1, . . . ,m− 1}.

For example, when n = 1 and m = 2, then Definition 2(b) amounts to D(1,2)(x, t) ≤ 0

for all (x, t) ∈ X × T . Also, when n = m = 2, it corresponds to D(1,2)(x, T ) ≤ 0 for

all x ∈ X and D(2,2)(x, t) ≤ 0 for all (x, t) ∈ X × T . Note that the latter case has an

additional requirement: D(1,2)(x, T ) ≤ 0 for all x ∈ X at the terminal period T . This

definition is the basis of our testing strategy. Specifically, we replace 2(a) the hypothesis

of interest by 2(b) the equivalent formulation.
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2.2. The Hypotheses of Interest. The null hypothesis of n-order time and m-th order

stochastic dominance is given by

H
(n,m)
0 : NPVv,u(X1) ≥ NPVv,u(X2), ∀(v, u) ∈ Vn × Um, (2.2)

which is equivalent to F1 and F2 satisfying Definition 2(b). For example, H(2,2)
0 says that

all risk averse individuals who discount with decreasing and convex discount functions

would prefer project one to project two. The alternative hypothesis H(n,m)
1 is the negation

of H(n,m)
0 , that is, there exists at least one person with v, u ∈ Vn × Um who ranks the

prospects differently.

Under the discrete time setup T = {0, 1, . . . , T}, Definition 2(b) consists of L := (n +

T )×(m−1) inequalities for the functional D(i+1,j+1)(·, t) := F
(i+1,j+1)
1 (·, t)−F (i+1,j+1)

2 (·, t)

for i ∈ {0, . . . , n−1}, j ∈ {1, . . . ,m−1}, t ∈ {0, . . . , T} . Below, for notational convenience,

we shall denote the functionals in Definition 2(b) as vl(·), l = 1, . . . , L, i.e.,

vl(x) :=



D(1,l+1)(x, T ), 1 ≤ l ≤ (m− 1)

D(2,l+1−(m−1))(x, T ), (m− 1) + 1 ≤ l ≤ 2(m− 1)
... ...

D(n,l+1−(n−1)(m−1))(x, T ), (n− 1)(m− 1) + 1 ≤ l ≤ n(m− 1)

D(n,l+1−n(m−1))(x, 0), n(m− 1) + 1 ≤ l ≤ (n+ 1)(m− 1)

D(n,l+1−(n+1)(m−1))(x, 1), (n+ 1)(m− 1) + 1 ≤ l ≤ (n+ 2)(m− 1)
... ...

D(n,l+1−(n+T−1)(m−1))(x, T − 1), (n+ T − 1)(m− 1) + 1 ≤ l ≤ (n+ T )(m− 1).
(2.3)

Let Λp : RL → [0,∞) be a nonnegative and increasing function for p ∈ {1, 2}. Specifi-

cally, we focus on the following map:

Λp(v1, . . . , vL) =
L∑
l=1

[vl]p+, or (max{[v1]+, . . . , [vL]+})p , (2.4)

where for a ∈ R, [a]+ = max{a, 0}. Define the population quantity

d∗ =
∫
X

Λp (v1(x), . . . , vL(x)) dx. (2.5)
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Then, the hypotheses of interest can be equivalently stated as

H
(n,m)
0 : d∗ = 0 vs. H(n,m)

1 : d∗ > 0.

The test statistic introduced below is based on the sample analogue of d∗.

We allow for the case where Xkt depends on unknown parameters, so that we may

control for systematic differences using a model specification. Specifically, we let Xkt(θ)

be specified as

Xkt(θ) = ϕkt(Wt, θ), k = 1, 2,

where Wt is a random vector in RdW and ϕkt(·, θ) is a real-valued function known up to

the parameter θ ∈ Θ ⊂ Rdθ . We let Xkt = Xkt(θ0) for some θ0 ∈ Θ. For example, we may

take Xkt to be the residual from the regression

Xkt = Ykt − Z
ᵀ

ktθ0,

where Ykt = Z
ᵀ

ktθ0 + εkt with E(εkt|Zkt) = 0 a.s. In this case, we take W = (Y, Z) and

ϕkt(w, θ) = ykt − z
ᵀ

ktθ, w = (y, z).

3. Test Statistics

We now define our test statistic based on data {Wkti, i = 1, . . . , Nk, t ∈ T , k = 1, 2}.

For k = 1, 2, let

F̄k(x, t, θ) := 1
Nk

Nk∑
i=1

1(Xkti(θ) ≤ x) and F̄k
(1,1)(x, t, θ) :=

t∑
s=0

F̄k(x, s, θ)

denote the empirical distribution function (EDF) and the EDF with time-accumulation

(EDFT), respectively. Likewise, define the empirical analogue of the general integrated

CDF with time-accumulation as

F̄k
(n,m)(x, t, θ) = 1

Nk

Nk∑
i=1

t∑
s=0

(t− s+ 1)n−1(x−Xksi(θ))m−11(Xksi(θ) ≤ x)
(m− 1)! (3.1)

= 1
Nk

Nk∑
i=1

t∑
s=0

at(s)hx(Xksi(θ)),

where at(s) := (t− s+ 1)n−1 and for m ≥ 1, hx(ϕ) := (x− ϕ)m−11{ϕ ≤ x}/(m− 1)! Let

D̄(n,m)(x, t, θ̂) := F̄1
(n,m)(x, t, θ̂) − F̄2

(n,m)(x, t, θ̂), where θ̂ denotes a consistent estimator

of θ0. Let v̂l(x) be the sample analogue of vl(x) (defined in (2.3)), l = 1, . . . , L, with

D(i,j)(x, t) replaced by D̄(i,j)(x, t, θ̂) for i ∈ {1, . . . , n}, j ∈ {2, . . . ,m} and t ∈ {0, . . . , T} .
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To test the null hypothesis H(n,m)
0 , we consider the following one-sided Lp-type test

statistic (based on the sample analogue of d∗ defined in (2.5)):

TN = rpN

∫
X

Λp (v̂1(x), . . . , v̂L(x)) dx, (3.2)

where rN :=
√

(N1N2)/(N1 +N2).

We next present the regularity conditions that we work with to derive the properties

of TN . In the following assumptions, we specify the conditions for the data generating

process of W and the map ϕkt. Let P be the collection of all the potential distributions

of W that satisfy Assumptions 1, 2, and 3 below. Let BΘ(δ) ≡ {θ ∈ Θ : ||θ − θ0|| < δ}

be the δ-neighborhood of θ0, where || · || denotes the Euclidean norm.

Assumption 1.

(a) {Wkti}Nki=1 is a random sample for t ∈ T and k = 1, 2.

(b) As N1, N2 →∞, N1/(N1 +N2)→ λ ∈ (0, 1) for t ∈ T .

(c) For some δ > 0, supP∈P EP [supθ∈BΘ(δ)|Xkti(θ)|2((m−1)∨1)+δ] < ∞ for t ∈ T and

k = 1, 2.

(d) For some δ > 0, there exists a non-random dθ × 1 vector Γkt,P (x) such that

|EP [hx(Xkti(θ))]− EP [hx(Xkti(θ0))]− Γkt,P (x)ᵀ(θ − θ0)|

≤ C||θ − θ0||2, t ∈ T , k = 1, 2,

with constant C does not depend on P .

Assumption 1(a) implies that, for each k = 1, 2, the observations are independent across

i, but are possibly dependent over time t for a given i. This assumption allows X1ti and

X2ti to be dependent for any (t, i). Assumption 1(b) is a moment condition with local

uniform boundedness. In the example of linear regression models where Ykti = Zᵀktiθ0+εkti,

we may write Xkti(θ) = εkti + Zᵀkti(θ0 − θ) and hence the condition is satisfied when

supP∈P EP [|εkti|2((m−1)∨1)+δ] < ∞ and supP∈P EP [|Zkti|2((m−1)∨1)+δ] < ∞. Assumption

1(c) is differentiability of the functional
∫
hx(Xkti(θ))dP in θ ∈ BΘ(δ). When m = 1, in

the example of linear regression models, it is satisfied with Γkt,P (x) = EPfε|Z(x|Zkti)Zkti
when the conditional density fε|Z(·|Zkti) of εkti given Zkti is second order continuously

differentiable with bounded derivative and the moment condition in 2(b) holds. When

9



m = 2, hx(ϕ) is Lipschitz in ϕ with the coefficient bounded by C|x − ϕ|m−2. Hence,

Assumption 1(c) follows if the moment condition in Assumption 1(b) is satisfied.

Assumption 2.

(a) Xkti(θ0) has distribution function Fk(·, t) and has density fk(·, t) with respect to

Lebesgue measure for t ∈ T and k = 1, 2.

(b) Condition (A) below holds when m = 1 and condition (B) holds when m = 2 :

(A) There exist δ, C > 0 and a subvector W1 of W such that (i) the conditional

density of W given W1 is bounded uniformly over θ ∈ BΘ(δ) and over P ∈ P , (ii)

for each θ1 and θ2 in BΘ(δ), ϕkt(W, θ1) − ϕkt(W ; θ2) is measurable with respect

to the σ-field of W1, and (iii) for each θ ∈ BΘ(δ) and for each ε > 0,

sup
P∈P

sup
w1

EP

[
sup

θ1∈BΘ(δ)
|ϕkt(W, θ1)− ϕkt(W, θ)|2 |W1 = w1

]
≤ Cε2s2 (3.3)

for some s2 ∈ (λ/2, 1] with λ = 2× 1{m = 1} + 1{m > 1}, where the supremum

over w1 runs in the support of W1.

(B) There exist δ, C > 0 such that Condition (iii) above is satisfied with the

conditional expectation replaced by the unconditional one.

We assume that θ̂ satisfies the following conditions:

Assumption 3.

(a) For each ε > 0, supP∈PP{||θ̂ − θ0|| > ε} = o(1) as N1, N2 →∞.

(b) For each ε > 0, k = 1, 2 and t ∈ T ,

sup
P∈P

P

sup
x∈X

∣∣∣∣∣∣
√
NkΓkt,P (x)′[θ̂ − θ0]− 1√

Nk

Nk∑
i=1

ψx,kt(Wi; θ0)

∣∣∣∣∣∣ > ε

→ 0, (3.4)

where ψx,kt(·) satisfies that there exist η, δ > 0 such that for all x ∈ X , EP [ψx,kt(W ; θ0)] =

0,

sup
P∈P

EP

[
supθ∈BΘ(δ)supx∈X |ψx,kt(W ; θ)|2+η

]
<∞.

(c) There exist a bounded function V on X and constants C, δ > 0 and s1 ∈ (1/2, 1]

such that for each (x1, θ1) ∈ X ×BΘ(δ) and for each ε > 0, t ∈ T ,

E
[

sup
x∈X :dV (x,x1)≤ε

sup
θ∈BΘ(δ):||θ−θ1||≤ε

|ψx,kt(W ; θ)− ψx1,kt(W ; θ1)|2
]
≤ Cε2s1 ,

where dV (x, x1) := |V (x)− V (x1)|.
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Under these regularity conditions, we can derive the asymptotic null distribution of the

test statistic, which is stated in Lemma 8 in the appendix. The limiting distribution is

non-pivotal and so the issue of how to conduct inference here remains to be settled. We

suggest several solutions to this problem starting with a bootstrap procedure to compute

the critical values, which extends the contact set approach of Linton, Song and Whang

(2010).

4. Bootstrap Critical Values

The asymptotic distribution of the test statistic depends on the true data generating

processes in a complex way. The traditional approach for obtaining critical values is

to mimic the asymptotic distribution of the test statistic under the least favorable case

(LFC) of the null hypothesis, where the inequalities composing the null hypothesis (2.2)

hold with equalities. However, this approach is generally too conservative because the

LFC is only a strict subset of the null hypothesis. In a dynamic context such as ours,

this approach is even less attractive because the null hypothesis consists of inequality

restrictions among a sequence of distribution functions over possibly a long time period,

and the inequalities might be binding only at a subset of the whole time period T and/or

over a subset (i.e., the “contact set” ) of the support X .

By exploiting the information on the contact set, we propose a method to compute

bootstrap critical values that may yield tests with enhanced power. For the purpose of

comparison, we first describe the critical values based on the LFC.

4.1. The Least Favorable Case. Compute the bootstrap critical values in the following

steps:

(1) For each k = 1, 2, draw a bootstrap sample S∗k := {W∗
k,1, . . . ,W∗

k,Nk
}, where the

vectors W∗
k,i = (W ∗

k0i, . . . ,W
∗
kT i)ᵀ ∈ RT+1 for i = 1, . . . , Nk are independently

drawn with replacement from the vectors that comprise the original sample Sk :=

{Wk,1, . . . ,Wk,Nk}, where Wk,i = (Wk0i, . . . ,WkT i)ᵀ represents a time path ofWkti

over t ∈ T for each i ∈ {1, . . . , Nk}.
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(2) Using the bootstrap sample S∗k , compute X∗kti(θ) = ϕkt(W ∗
i , θ), the estimate θ̂∗

and the EDFTs:

F̄k
(n,m)∗(x, t, θ) = 1

Nk

Nk∑
i=1

t∑
s=0

at(s)(x−X∗ksi(θ))m−11(X∗ksi(θ) ≤ x)
(m− 1)! , (4.1)

D̄(n,m)∗(x, t, θ̂∗) = F̄1
(n,m)∗(x, t, θ̂∗)− F̄2

(n,m)∗(x, t, θ̂∗), (4.2)

(3) Compute the bootstrap test static under the LFC:

T ∗N,LF = rpN

∫
X

Λp (v̂∗1(x)− v̂1(x), . . . , v̂∗L(x)− v̂L(x)) dx, (4.3)

where v̂∗l (x) denotes vl(x), l = 1, . . . , L withD(i,j)(x, t) replaced by D̄(i,j)(x, t, θ̂∗).

(4) Repeat the steps (1)-(3) above B-times, and compute the (1− α) quantile of the

bootstrap distribution of T ∗N,LF as the LFC-bootstrap critical value c∗N,LF (1− α).

In Step (1), if W1ti and W2ti are dependent for each t ∈ T and N1 = N2 = N ,

then we may generate the bootstrap sample S∗ := {Z∗1, . . . ,Z∗N} by drawing vectors

Z∗i = (W∗
1,i,W∗

2,i), i = 1, . . . , N from the paired observations S := {Z1, . . . ,ZN}, where

Zi = (W1,i,W2,i), i = 1, . . . , N.4

Under regularity conditions, the bootstrap critical values based on the LFC can be

shown to yield tests that are asymptotically valid uniformly in P . However, they are

often too conservative in practice. As an alternative to the LFC-based bootstrap critical

value, we propose a bootstrap critical value that can be less conservative but at the

expense of introducing an additional tuning parameter.

4.2. The Contact Set Approach. To describe out procedure, we first introduce some

notation. Define NL := 2NL \ ∅, i.e., the collection of all the nonempty subsets of NL ≡

{1, 2, . . . , L}. For any A ∈ NL and v = (v1, . . . , vL)ᵀ ∈ RL, we define vA to be v except

that for each l ∈ NL\A, the l-th entry of vA is zero, and let

ΛA,p(v) ≡ Λp(vA). (4.4)

4Alternative ways to the critical values under the LFC restriction would include bootstrapping from the
pooled sample {S1,S1} or using multiplier simulations.

12



That is, ΛA,p(v) is a “censoring” of Λp(v) outside the index set A. Now, we define the

contact sets: for A ∈ NL and for c1, c2 > 0,

BN,A(c1, c2) :=

x ∈ X :
|rNvl(x)| ≤ c1, for all l ∈ A

rNvl(x) < −c2, for all l ∈ NL/A

 , (4.5)

where vl(x) is defined in (2.3).

Lemma 3. Suppose that Assumptions 1, 2 and 3 hold. Suppose further that cN is a

positive sequence such that cN,1, cN,2 →∞ as N1, N2 →∞. Then,

inf
P∈P0

P

TN = rpN
∑
A∈NL

∫
BN,A(cN,1,cN,2)

ΛA,p(v̂1(x), . . . , v̂L(x))dx

→ 1,

where P0 ⊂ P is the set of potential distributions of the observed random vector under the

null hypothesis H(n,m)
0 .

Lemma 3 shows that the test statistic TN is uniformly approximated by an integral with

domain restricted to the contact sets BN,A(cN) in large samples. This result suggests that

one may consider a bootstrap procedure that mimics the representation of TN in Lemma

3.

Let {v̂∗l (x) : l ∈ NL} be the bootstrap counterpart of {v̂l(x) : j ∈ NL} defined in Step

(3) above. Then, our bootstrap test statistic is defined as follows:

T ∗N = rpN
∑
A∈NL

∫
B̂N,A(ĉN )

ΛA,p (v̂∗1(x)− v̂1(x), . . . , v̂∗L(x)− v̂L(x)) dx,

where B̂N,A(ĉN) denotes the estimated contact set:

B̂N,A(ĉN) :=

x ∈ X :
|rN v̂l(x)| ≤ ĉN , for all l ∈ A

rN v̂l(x) < −ĉN , for all l ∈ NL/A

 , (4.6)

where ĉN is a positive sequence satisfying the following assumption:

Assumption 4. For ψx,kt in Assumption 3(b), for any ε > 0,

P

sup
x∈X

∣∣∣∣∣∣
√
NkΓ̂kt,P (x)− 1√

Nk

Nk∑
i=1

ψx,kt(W ∗
i ; θ̂)− 1

Nk

Nk∑
i=1

ψx,kt(Wi; θ̂)


∣∣∣∣∣∣ > ε | WN

→P 0,

(4.7)

uniformly in P ∈ P , where WN is the σ-field generated by {Wkti : i = 1, ..., Nk; k = 1, 2}

and Γ̂kt,P (x) = (1/Nk)
∑Nk
i=1

[
hx(ϕks(W ∗

i , θ̂
∗))− hx(ϕks(W ∗

i , θ̂))
]
.

13



Assumption 5. For each N ≥ 1, there exist non-stochastic sequences cN,1, cN,2 > 0 such

that cN,1 ≤ cN,2 and

inf
P∈P

P {cN,1 ≤ ĉN ≤ cN,2} → 1 and cN,1 + rNc
−1
N,2 →∞.

Let c∗N,α be the (1− α)-th quantile from the bootstrap distribution of T ∗N . We take

c∗N,α,η = max{c∗N,α, η} (4.8)

as our critical value, where η ≡ 10−6 is a small fixed number.

The following theorem establishes the uniform validity of our bootstrap procedure.

Theorem 4. Suppose that Assumptions 1 - 5 hold. Then

limsup
N1,N2→∞

sup
P∈P0

P
{
TN > c∗N,α,η

}
≤ α.

Remark 1. The critical value (4.8) is in a different form from that of Linton, Song and

Whang (2010) who considered the SD test in a static context (i.e., T = 0) without time

preference and proposed to use the LFC-based bootstrap critical value c∗N,LF (1−α) when

the estimated contact set ∪A∈NLB̂N,A(ĉN) is empty. By taking maximum with arbitrary

small positive constant, the critical value c∗N,α,η has substantial computational advantage

over the latter.

Remark 2. One might question whether the bootstrap test is asymptotically exact, i.e., the

inequality in Theorem 4 holds as an equality. In fact, under some additional assumptions,

we can show that the test achieves the level α asymptotically, uniformly over a subset

P00 ⊂ P0, i.e.,

limsup
N1,N2→∞

sup
P∈P00

∣∣∣P {TN > c∗N,α,η
}
− α

∣∣∣ = 0.

For brevity, however, we do not give the formal result; see Linton, Song and Whang (2010,

Theorem 2 (ii)) and Lee, Song and Whang (2018, Theorem 2) for related results.

We now establish consistency of our proposed test:

Theorem 5. Suppose that Assumptions 1 - 5 hold. Then, under a fixed alternative hy-

pothesis H(n,m)
1 such that ∫

X
Λp (v1(x), . . . , vL(x)) dx > 0,
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we have, as N1, N2 →∞,

P
{
TN > c∗N,α,η

}
→ 1.

5. Alternative critical values

The contact set approach described above achieves power enhancement using the boot-

strap critical values based on explicit estimates of the binding parts of the inequality

constraints. In this section, we consider the critical values based on the numerical delta

method, which also might have enhanced power properties compared to the traditional

LFC-based critical values and have some computational advantages.

The numerical delta method can be described using the general framework of Fang

and Santos (2019) and Hong and Li (2018) for conducting inference on directionally

differentiable functions. For this purpose, we first introduce the concept of Hadamard

directional differentiability of a map between normed spaces:

Definition 6. Let D and E be Banach spaces endowed with norm ‖ · ‖D and ‖ · ‖E,

respectively. A map φ : Dφ ⊆ D → E is said to be Hadamard directionally differentiable

at θ ∈ Dφ tangentially to a set D0 ⊆ D, if there exists a continuous map φ′θ : D0 → E

such that

lim
N→∞

∣∣∣∣∣∣∣∣φ(θ + tNhN)− φ(θ)
tN

− φ′θ(h)
∣∣∣∣∣∣∣∣
E

= 0, (5.1)

for all sequences {hN} ⊂ D and {tN} ⊂ R+ such that tN ↓ 0, hN → h ∈ D0 as N → ∞

and θ + tNhN ∈ Dφ for all N .

We call φ′θ (h) as the Hadamard directional derivative at θ in direction h. The map φ′θ :

D0 → E is possibly nonlinear, but (5.1) implies that it is continuous and homogeneous of

degree one (Shapiro (1990)). If φ′θ is linear, then we say that φ is Hadamard differentiable

at θ tangentially to D0.

Fang and Santos (2019, Theorem 2.1) show that if θ̂N is an estimator of θ0 ∈ Dφ such

that rN(θ̂N − θ0)⇒ G0 for some sequence rN ↑ ∞, where G0 is a tight process, then

rN
[
φ(θ̂N)− φ(θ0)

]
⇒ φ′θ0(G0). Heuristically, this result follows from the definition (5.1)

with tN = 1/rN which implies

rN
[
φ(θ̂N)− φ(θ0)

]
=
φ
{
θ0 + (1/rN) · rN(θ̂N − θ0)

}
− φ(θ0)

1/rN
≈ φ′θ0(rN(θ̂N − θ0))
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and the continuous mapping theorem applied to φ′θ0 . Based on this result, Fang and Santos

(2019, Theorem 3.2) suggest that the limiting distribution φ′θ0(G0) can be consistently

estimated by φ̂′N(Z∗N), where Z∗N is a consistent estimator (such as the bootstrap) of G0

and the map φ̂′N is a consistent estimator of φ′θ0 satisfying their Assumption 4. This

method is closely related to the contact set approach described above.

On the other hand, Hong and Li (2018, hereafter HL) suggest a numerical delta method

that does not require analytic computation of the directional derivative φ′θ0 which can be

cumbersome in some applications. They propose estimating φ′θ0(G0) by the numerical

derivative with step size εN :

φ̃′N(Z∗N) := φ(θ̂N + εNZ∗N)− φ(θ̂N)
εN

, (5.2)

where εN satisfies εN → 0 and rNεN →∞ as N →∞. Heuristically, this estimator works

because

φ̃′N(Z∗N) =
φ

{
θ0+εN

(
Z∗
N+ θ̂N−θ0

εN

)}
−φ(θ0)

εN
−

φ

{
θ0+εN

(
θ̂N−θ0
εN

)}
−φ(θ0)

εN
≈ φ′θ0(G0),

where the approximation follows from the definition (5.1) and the results θ̂N−θ0
εN

= rN(θ̂N−θ0)
rN εN

≈

0 and Z∗N + θ̂N−θ0
εN
≈ G0 for N sufficiently large.5

When the first order numerical derivative is degenerate, the second (or higher) order

numerical delta method can be used (HL and Cheng and Fang (2019)). The second order

Hadamard directional derivative at θ0 ∈ Dφ in the direction h tangentially to D0 ⊆ D is

defined as φ′′θ0 : D0 → E such that

lim
N→∞

∣∣∣∣∣∣∣∣φ(θ0 + tNhN)− φ(θ0)− tNφ′θ0(hN)
1
2tN

− φ′′θ0(h)
∣∣∣∣∣∣∣∣
E

= 0, (5.3)

for all sequences {hN} ⊂ D and {tN} ⊂ R+ such that tN ↓ 0, hN → h ∈ D0 as N → ∞

and θ0 + tNhN ∈ Dφ for all N . If θ̂N satisfies rN(θ̂N −θ0)⇒ G0 for some sequence rN ↑ ∞,

where G0 is a tight process, then it can be shown (Theorem 4.1 of HL) that

r2
N

[
φ(θ̂N)− φ(θ0)− φ′θ0(θ̂N − θ0)

]
⇒ 1

2φ
′′
θ0(G0).

5See Theorem 3.1 of HL for a formal result.
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If φ′θ0(h) = 0 ∀h ∈ D0, we may approximate 1
2φ
′′
θ0(G0) by the second order numerical

derivative:

1
2 φ̃
′′
N(Z∗N) :=


φ(θ̂N+εNZ∗

N )−φ(θ̂N )
ε2N

or
φ(θ̂N+2εNZ∗

N )−2φ(θ̂N+εNZ∗
N )+φ(θ̂N )

2ε2N
,

(5.4)

where εN satisfies εN → 0 and rNεN →∞ as N →∞.

In our setting, we let

φ(θ0) =
∫
X

Λp

(
F

(1,1)
1 (x, T )− F (1,1)

2 (x, T ), . . . , F (n,m)
1 (x, T − 1)− F (n,m)

2 (x, T − 1)
)
dx,

where θ0 =
(
F

(1,1)
1 (·, T ), F (1,1)

2 (·, T ), . . . , F (n,m)
1 (·, T − 1), F (n,m)

2 (·, T − 1)
)
∈ ∏2L

l=1 `
∞(X ),6

D = ∏2L
l=1 `

∞(X ), E = R, and φ : ∏2L
l=1 `

∞(X )→ R is defined by

φ(θ) =
∫
X

Λp

(
θ

(1)
1 (x)− θ(1)

2 (x), . . . , θ(1)
L (x)− θ(2)

L (x)
)
dx (5.5)

for any θ :=
(
θ

(1)
1 , θ

(2)
1 , . . . , θ

(1)
L , θ

(2)
L

)
∈ ∏2L

l=1 `
∞(X ). Let

θ̂N =
(
F̄

(1,1)
1 (·, T ), F̄ (1,1)

2 (·, T ), . . . , F̄ (n,m)
1 (·, T − 1), F̄ (n,m)

2 (·, T − 1)
)

(5.6)

denote the estimator of θ0 (Equation (3.1)). Then, our test statistic can be written as

TN = rpNφ(θ̂N).

Let NL, NL, and ΛA,p(v) be as defined before. For any A ∈ NL, define

B0
A(θ) :=

x ∈ X :
θ

(1)
l (x) = θ

(2)
l (x), for all l ∈ A

θ
(1)
l (x) < θ

(2)
l (x), for all l ∈ NL/A

 . (5.7)

It is straigthforward to show that that the map φ is Hadamard directionally differentiable:

Theorem 7. Let φ(θ) and ΛA,p(v) be as defined in (5.5) and (4.4), respectively.

(i) When p = 1, φ is first order Hadamard directionally differentiable at any θ ∈∏2L
l=1 `

∞(X ) satisfying θ(1)
l ≤ θ

(2)
l , l = 1, . . . , L, and its derivative is given by: for

any h = (h(1)
1 , h

(2)
1 , . . . , h

(1)
L , h

(2)
L ) ∈ ∏2L

l=1 `
∞(X ),

φ′θ(h) =
∑
A∈NL

∫
B0
A(θ)

ΛA,1(h(1)
1 (x)− h(2)

1 (x), . . . , h(1)
L (x)− h(2)

L (x))dx.

(ii) When p = 2, φ is second order Hadamard directionally differentiable at any θ ∈∏2L
l=1 `

∞(X ) satisfying θ(1)
l ≤ θ

(2)
l , l = 1, . . . , L, and its first and second derivatives

6See (2.3) for the ordering of the elements of θ0.
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are given by: for any h = (h(1)
1 , h

(2)
1 , . . . , h

(1)
L , h

(2)
L ) ∈ ∏2L

l=1 `
∞(X ), φ′θ(h) = 0 and

φ′′θ(h) =
∑
A∈NL

∫
B0
A(θ)

ΛA,2(h(1)
1 (x)− h(2)

1 (x), . . . , h(1)
L (x)− h(2)

L (x))dx.

In our setting, with θ̂N given by (5.6), we can establish that rN
(
θ̂N − θ0

)
converges

weakly to a tight Gaussian process (Lemma 8 in the appendix). Therefore, Theorem 7

suggests that we may approximate the asymptotic null distribution of our test statistic

TN = rpNφ(θ̂N) by the numerical derivative estimators φ̃′N(Z∗N) (equation (5.2), when

p = 1) and 1
2 φ̃
′′
N(Z∗N) (equation (5.4), when p = 2) with Z∗N given by

Z∗N = (rN (v̂∗1(·)− v̂1(·)) , . . . , rN (v̂∗L(·)− v̂L(·))) ,

where {v̂∗l : l = 1, . . . , L} is as defined in the bootstrap procedure (4.3). Let c∗N,ND(1−α)

denote the (1 − α) quantile of the bootstrap distribution of φ̃′N(Z∗N) when p = 1 (or
1
2 φ̃
′′
N(Z∗N) when p = 2). Then, using Theorems 3.5 and 4.1 of HL, we can show that the

test based on the c∗N,ND(1−α) also has (uniformly) correct size under the null hypothesis

and is consistent against the fixed alternative.

6. Monte Carlo Experiments

In this section, we conduct Monte Carlo simulations to compare the finite sample per-

formance of the proposed tests. We evaluate the size control of all the procedures we

introduced and we evaluate the power improvement of the contact set approach and the

numerical delta method. We also compare the finite sample performances of L1 and L2

type statistics.

To construct ĉN for contact-set estimation, we choose

ĉN = Ccs(log logN)q1−αN (S∗N), (6.1)

where

S∗N = max{sup
l,x

(v̂∗l (x)− v̂l(x)), ε
√

logN}

and q1−αN (S∗N) is the 1 − αN -th quantile of the bootstrap distribution of S∗N with αN =

0.1/ logN , Ccs is a constant and ε is a small number.

18



6.1. Normal Process. First, we evaluate a simple stationary normal process. Let T ≡

{0, 1, 2, 3, 4}, and define:

X1,t = 0.5X1,t−1 + Zt for t ∈ T

X2,t
d= X1,t for t ∈ T \ τ

X2,τ
d= σX1,τ ,

where X1,0, Zt ∼ N(0, 1) for t ∈ {1, 2, 3, 4}, σ ∈ {1, 0.5, 2}. The hypotheses of interest

are:

H
(n,m)
0 : X1 �nTmSD X2 for n,m = 1, 2. (6.2)

From this DGP, X1 and X2 might be distributionally different only at t = τ . If

σ = 1, the two processes are stochastically equivalent, which corresponds to the least

favorable case of the null hypothesis. We expect the rejection ratio of the test is near

the significance level α = 0.05. The case σ = 0.5 results in crossing of two distributions

at t = τ , so we expect rejection of H(1,1)
0 and H(2,1)

0 . In addition, if σ = 0.5, risk-averse

agents would prefer X2 to X1, because the two prospects have the same mean over time

but the standard deviation of X2 is smaller. Thus, we also expect the rejection of H(1,2)
0

and H
(2,2)
0 . If σ = 2, there is also crossing of two distributions at t = τ , so we expect

rejection of H(1,1)
0 and H(2,1)

0 . However, setting σ = 2 makes X1 have a smaller standard

deviation than X2, so H(1,2)
0 and H(2,2)

0 are true.

Regarding the simulations, we used the grid of size 100 that is equally spaced on the

range of pooled EDFTs. We conducted 200 bootstrap resamples and 1000 simulations.

For calculating the test statistics, the trapezoidal numerical integration was employed.

For tuning parameters, η = 10−6, Ccs = 0.5 were selected for both p = 1 and p = 2

statistics. For the numerical delta method, we choose εN = r
−1/8
N for p = 1 and εN =

r
−1/128
N for p = 2. We approximated φ̃′N(Z∗N) ≈ φ(θ̂N+εNZ∗

N )−φ(θ̂N )
εN

for L1-type statistic and
1
2 φ̃
′′
N(Z∗N) ≈ φ(θ̂N+εNZ∗

N )−φ(θ̂N )
ε2N

for L2-type statistic . Although we used both max and sum

type Λp, because the two statistics show similar results, we only report results using max

type statistics. The sample size N is 500.

We first show the case τ = 0 for comparing the LFC, contact-set approach and the

numerical delta method. In Table 1, the simulation results are shown. First, all the LFC,

the contact set approach, and the numerical delta method show proper size control as
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Table 1. The Rejection Ratio: Normal Process, τ = 0

p = 1 p = 2
σ Order LFC Contact NDM LFC Contact NDM
1 (1,1) 0.048 0.05 0.051 0.051 0.051 0.056

(1,2) 0.056 0.056 0.058 0.053 0.053 0.061
(2,1) 0.054 0.055 0.056 0.051 0.052 0.059
(2,2) 0.058 0.058 0.058 0.059 0.059 0.067

0.5 (1,1) 0.116 0.236 0.137 0.34 0.388 0.394
(1,2) 0.113 0.115 0.113 0.097 0.097 0.109
(2,1) 0.399 0.686 0.472 0.716 0.822 0.775
(2,2) 0.17 0.193 0.171 0.164 0.174 0.184

2 (1,1) 0.534 0.66 0.656 0.683 0.752 0.77
(1,2) 0.009 0.028 0.011 0.026 0.031 0.029
(2,1) 0.895 0.978 0.946 0.952 0.982 0.964
(2,2) 0.005 0.025 0.005 0.021 0.027 0.025

Notes The number in each cell of LFC, Contact and NDM columns means the
rejection ratio of the simulation using the LFC-based approach, the contact set
approach, and numerical delta method to estimate critical value, respectively. For
tuning parameters, η = 10−6, Ccs = 0.5 were selected for both p = 1 and p = 2
statistics. For numerical delta method, εN = r

−1/8
N for p = 1 and εN = r

−1/128
N for

p = 2 were specified. We used the max-type Λp. The test used the grid of size 100
that equally spaced on the range of pooled EDFTs. We conducted bootstrapping
200 times and 1000 simulations. The sample size N is 500.

expected for both p = 1 and p = 2. Second, power improvement is remarkable when two

distributions cross each other. This can be seen at the case σ = 0.5, 2 for (1, 1) and (2, 1)

orders.

We turn our attention to see whether a time order affects the testing result. Note

that the second time order preference distinguishes two periods near to the present more

than two periods far from the present. For example, if an economic agent has the time

preference contained in the second time order preference set, he differentiates today and

tomorrow more than 100 days and 101 days after today. Therefore, we can intuitively

guess the closer τ is to 0, the more testing results are sensitive to σ. Table 2 shows the

result of using the contact-set approach. Remarkably, as time order changes from first to

second, the impact of τ gets significant. In columns of TSD order (2, 1) and (2, 2), we can

see that the rejection ratio gets bigger and smaller in order, depending on the hypotheses.
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Table 2. The Rejection Ratio: Normal Process, Varying τ

p = 1 p = 2
σ τ (1, 1) (2, 1) (1, 2) (2, 2) (1, 1) (2, 1) (1, 2) (2, 2)
0.5 0 0.236 0.686 0.115 0.193 0.388 0.822 0.097 0.174

2 0.324 0.22 0.158 0.141 0.424 0.324 0.137 0.124
4 0.31 0.068 0.126 0.072 0.367 0.079 0.107 0.062

2 0 0.66 0.978 0.028 0.025 0.752 0.982 0.031 0.027
2 0.735 0.619 0.029 0.03 0.726 0.561 0.036 0.033
4 0.711 0.135 0.04 0.044 0.645 0.103 0.044 0.046

Notes The number in each cell of (1, 1), (1, 2) (2, 1) and (2, 2) columns means the
rejection ratio of the simulation whose hypotheses are (1, 1), (1, 2), (2, 1), and (2, 2)
time stochastic orders respectively. To estimate critical value, we use the contact-
set approach. For tuning parameters, η = 10−6, Ccs = 0.5 were selected for both
p = 1 and p = 2 statistics. We used the max-type Λp. The test used the grid of size
100 that equally spaced on the range of pooled EDFTs. We conducted 200 times of
bootstrapping for all 1000 number of simulations. The sample size N is 500.

6.2. Mean-Shifting Uniform Distributions. To explore the relationship between the

time order and testing results, we examine simple one-time mean-shifting uniform distri-

butions. We make a shift only at one time period to see how our test is affected by the

time period when divergence occurs. Let T = {0, 1, 2, 3, 4}, and define:

X1,t = 0.5X1,t−1 + ut − 1/2 for t ∈ T

X2,t
d= X1,t for t ∈ T \ τ

X2,τ
d= X1,τ + µ,

where ut ∼ U [0, 1] for t ∈ T , X1,−1 ≡ 0, and τ ∈ {0, 2, 4}. We vary µ in the range

[-0.10,0.14] .

The hypotheses are the same as (6.2). Adding µ > 0 shifts X1 to become interior of X2,

so the above H(n,m)
0 is false for all n,m = 1, 2. That is, the expected NPV of X2 is bigger

than the expected NPV of X1 Thus, we expect the rejection of all hypotheses. In contrast,

if we make µ < 0, X2 is interior of X1, so the hypotheses are true. Simulation was done

in the same setting in Section 6.1. except we compare two sample sizes N = 100, 500.

In this design, by varying µ and τ , we show how the magnitude of shifting and time

order jointly affect the power. In Figure 6.1, the test results are reported. We only show

the results of the contact-set approach. The other two methods show qualitatively similar
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results. In addition, we did simulations using both the max and sum type Λp for p = 1

and p = 2 cases. Because all specifications show similar results, we only report simulation

results from utilizing the sum type Λp with p = 2.

Figure 6.1. Simulation: Time order and Divergence Period (Power)

A. (1,1) Order B. (1,2) Order

C. (2,1) Order D. (2,2) Order

Notes This figure shows the rejection ratio of each specified (τ,N). Panel A. B. C. and
D. are the results of (1, 1), (1, 2), (2, 1), and (2, 2) time stochastic order hypotheses,
respectively. The solid line and the dotted line represent results of the sample size
N = 500 and N = 100, respectively. The round-, square- and down-triangle symbol
represent τ = 0, τ = 2, and τ = 4, respectively. We used the grid of size 100 that is
equally spaced on the range of pooled EDFTs. We conducted 200 times of bootstrapping
and 1000 number of simulations. For tuning parameters, η = 10−6, Ccs = 0.5 were
selected. The sum type Λp with p = 2 was specified.

In Figure 6.1, in the second time order testing, test results are more affected by τ . By

comparing results of Panel A and C, and Panel B and D, we can see that the gap between

τ = 0 and τ = 4 lines becomes larger as time order goes up from the first to the second

for both sample sizes. The gap between τ = 0 and τ = 4 lines also becomes more salient.
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Figure 6.2. Simulation: Time order and Divergence Period (Size)

A. (1,1) Order B. (1,2) Order

C. (2,1) Order D. (2,2) Order

Notes This figure shows the rejection ratio of each specified (τ,N). Panel A. B. C. and
D. are the results of (1, 1), (1, 2), (2, 1), and (2, 2) time stochastic order hypotheses,
respectively. The solid line and the dotted line represent results of the sample size
N = 500 and N = 100, respectively. The round-, square- and down-triangle symbol
represent τ = 0, τ = 2, and τ = 4, respectively. We used the grid of size 100 that is
equally spaced on the range of pooled EDFTs. We conducted 200 times of bootstrapping
and 1000 number of simulations. For tuning parameters, η = 10−6, Ccs = 0.5 were
selected. The sum type Λp with p = 2 was specified.

In Figure 6.2., we show test results when our hypotheses are true. Our test well controls

the size under or near to significance level α = 0.05. Again, the testing results are more

sensitive to τ when the time order is the second.
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7. Empirical Study

7.1. Testing the Welfare Improvement of a Microfinance Program. Does devel-

opment policy result in the improvement of the long-term welfare? This is one of the key

questions addressed in the economics literature. In this section, we illustrate how our test

can be applied for policy evaluation in a dynamic context. Our test provides a general

dynamic welfare comparison for evidence-based policy-decisionmaking.

We evaluate the impact of Thailand’s Million Baht Village Fund Program on dynamic

welfare; this project was evaluated in Kabsoki and Townsend (2011) using a structural

model and in Kabsoki and Townsend (2012) by a reduced-form analysis. The relation-

ship between development and credit constraints is important in terms of welfare as many

economists have discussed (e.g. Banerjee and Newman 1993; Galor and Zeira 1993; Baner-

jee and Duflo 2014). We use the replicate data of Kabsoki and Townsend (2012) that is

publicly available on the American Economic Journal: Applied Economics website.7 This

data is from the Townsend Thai Survey (Townsend et al. 1997), which contains 11 years

(1997-2007) of longitudinal households records from 64 rural Thai villages.8 Our test is

suitable for such a large field panel data structure.

To compare the impact of different amount of funds per household, we split households

into two groups based on the village median size in 2001. Because each village received

the same amount of funding, regardless of the size, a smaller village received more funds

per household.9 Therefore, we compare the dynamic utility of two household groups:

households in a small village and in a big village. For the utility measure, we use annual

total consumption (TC) and net income (NI).

We control for systematic differences induced by factors other than the fund program

by a linear regression model. Specifically, we follow the regression equation (6) in Kaboski

and Townsend (2012) with a slight modification

yn,t,k =
I∑
i=1

βi,kZi,n,t + φt,k + εn,t,k, (7.1)

where subscript n means a household, t means a time period, and k (∈ {TC,NI}) indi-

cates a welfare measure, while yn,t,k is either total consumption or net income, and Zi,n,t

7https://doi.org/10.1257/app.4.2.98
8For more detail, refer to Townsend et al. (1997) and Kaboski and Townsend (2012).
9See Kaboski and Townsend (2011, 2012) about the village size and exogeneity of the funding program.
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contains household control variables including: the number of adult males, the number

of adult females, the number of children, a dummy for male head of household, the age

of household head, the age of head squared, and the years of schooling of the household

head. φt is a yearly time fixed-effect. Compared with the original model, our specification

excludes household fixed effects and an intercept term. This is because our test allows

general time dependence structure of each household, so a fixed effect term is unnecessary.

Let Yv,k be a k-variable’s stochastic process of v group(v ∈ {Small, Big}, k ∈ {TC,NI})

from 2002 to 2007 and θ = (β1, . . . , βI , φ2002, . . . , φ2007)ᵀ . Also, let ε(θ̂)v,k be a residual k

stochastic process of group v.

Figure 7.1 shows descriptive analysis. In Figure 7.1 A, regarding the small group, there

is an increase in mean total consumption in 2002 that leads to a persistent gap for 4 years.

However, the trend of median total consumption does not show any significant change. In

Figure 7.1 B, both mean and median trends of each group’s net income cross each other

many times. There is an increase in net income only in 2003 but it does not lead to a

persistent gap. In Figure 7.1 C and D, we show standard deviations. The small village

group’s standard deviation of total consumption grows a lot after 2002, which is not the

case for the net income measure. This figure implies the necessity of TSD testing for two

reasons. First, huge differences between the mean and the median levels of both total

consumption and net income indicate there are outliers who consume and earn way more

than other households. Comparing only a mean level is vulnerable to such outliers and

policy evaluation only using the mean level cannot suggest an overall picture of dynamic

welfare improvement. Thus, taking distributions as a whole is necessary. Second, even

though there is a gap between the mean total consumption of each group, the standard

deviation also shows a large gap. Thus, standard mean-variance analysis also cannot

determine whether there was more welfare improvement for the small village group.

The hypotheses are as follows:

H
(n,m)
0,1 : YSmall,k �nTmSD YBig,k (7.2)

H
(n,m)
0,2 : YBig,k �nTmSD YSmall,k (7.3)

H
(n,m)
0,3 : ε(θ̂)Small,k �nTmSD ε(θ̂)Big,k (7.4)

H
(n,m)
0,4 : ε(θ̂)Big,k �nTmSD ε(θ̂)Small,k (7.5)
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Figure 7.1. Mean, quantiles and standard deviation of total consumption
and net income

A. Total Consumption: Mean and
Quantiles

B. Net Income: Mean and Quantiles

C. Total Consumption: Standard
Deviation

D. Net Income: Standard Deviation

Notes This figure shows the trend of yearly mean and quantiles of each small and big-
size village group from 1997 to 2007 year. The cross-sectional sample size is 344 and
328 for small- and big-size village group, respectively. In Figure A and B, the solid lines
indicate mean, the dotted lines shows median. The line in C and D indicate the trend of
standard deviation of total consumption and net income, respectively. The black vertical
line indicates year 2002 when the Million Baht Village Fund Program initiated. We use
replicate data by Kaboski and Townsend (2012)

where n,m = 1, 2 and k = TC,NI. H(n,m)
1,i is the negation of H(n,m)

0,i for i = 1, 2, 3, 4.

Intuitively, a household with more available funds has fewer credit constraints, so can

improve their dynamic utility through maximization. Based on this simple framework, we

expect rejection of (7.5) if the econometric model properly controls for other factors. In

addition, as a falsification test, we apply the TSD test to data from 1997 to 2001. If there
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is no TSD relation before the program but there are TSD relations after the program was

in place, it would be reasonable to argue that there is a general welfare improvement due

to the fund program.

Table 3. P-Values: Testing the Welfare Improvement

Panel A. Before the Fund Program (1997-2001)
Total Consumption Net Income

H
(n,m)
0 (1,1) (1,2) (2,1) (2,2) (1,1) (1,2) (2,1) (2,2)

YSmall � YBig 0.72 1 0.785 1 0.64 0.57 0.64 0.6
YBig � YSmall 0.305 0.245 0.23 0.165 0.705 0.51 0.68 0.505
εSmall � εBig 0.88 0.78 0.9 0.81 1 0.995 0.995 0.985
εBig � εSmall 0.84 0.255 0.75 0.16 0.7 0.19 0.48 0.165

Panel B. After the Fund Program (2002-2007)
Total Consumption Net Income

H
(n,m)
0 (1,1) (1,2) (2,1) (2,2) (1,1) (1,2) (2,1) (2,2)

YSmall � YBig 0.92 1 0.89 1 0.645 0.55 0.785 0.58
YBig � YSmall 0.06 0.02 0.035 0.005 0.54 0.265 0.545 0.255
εSmall � εBig 1 0.985 1 0.955 0.995 0.915 1 0.92
εBig � εSmall 0.175 0.02 0.07 0.005 0.375 0.015 0.27 0.015
Notes We test hypotheses (7.2) to (7.5) using panel data both before (1997-2001) and
after the fund program (2002-2007) The cross-sectional sample size is 344 and 328
for small- and big-size village group, respectively. We used the contact-set approach.
η = 10−6 and Ccs = 0.5 were specified as recommended based on simulation results.
We used the max-type Λp and p = 1. The test used the grid of size 100 that equally
spaced on the range of pooled EDFTs. We conducted bootstrapping 200 times. p = 2
case also reveals qualitatively similar results.

We show the test results in Table 3. For the significance level α = 0.05, every hypothesis

is not rejected when it comes to the period before the fund program. Thus, two prospects

stochastically yield the same expected NPV under general classes of utility and time-

discounting functions, corresponding to specified time and stochastic orders. In Panel B,

there is a difference between two different welfare measures. First, the hypotheses (7.3) for

(1,2), (2,1) and (2,2) TSD order using total consumption are rejected, but hypotheses (7.2)

are not rejected for every TSD order. In contrast, both hypotheses (7.2) and (7.3) using

net income are not rejected. Interestingly, after controlling for systematic difference, test

results become similar for both measurements; we rejected (7.5) for (2,1) and (2,2) TSD

order in both cases when using total consumption and net income. Therefore, our testing

provides a general consensus on the welfare improvement impact of the fund program

conditionally on regional household characteristics.
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8. Conclusion

This paper proposed Lp integrated type tests for TSD and attained their asymptotic

distributions under standard panel data sampling scheme. We applied a path-wise boot-

strap procedure to allow individual time series dependence. We described three methods

for attaining critical values, the LFC-based approach, contact-set approach and numeri-

cal delta method which all are asymptotically valid. Monte-Carlo simulation results were

shown to verify finite sample properties of the test. The relationship between the time

order and period when two prospects were different was well illustrated in simulation

results. We applied our testing to evaluate the dynamic welfare improvement of a micro-

finance program in Thailand. The TSD hypothesis implies strong restrictions on the data.

Therefore, if the null hypothesis is not rejected, the implied ordering is very convincing.

Because the statistical test for TSD had not yet been developed properly, this paper

would take a role as a stepping stone for further tests for TSD. In addition, since empirical

analysis to compare dynamic distributions over time as a whole has been rare, this paper

sheds light on a distinctive way of implementing empirical work. In particular, it would be

straightforward to extend our testing to dynamic counterfactual distributions of different

policy scenarios based on certain estimated relations.

9. Appendix

Let νkt(·) is a Gaussian process on X with mean zero and covariance kernel given by

Ckt(x1, x2) = Cov (Vx1,kt(Wi; θ0), Vx2,kt(Wi; θ0)) ,

where

Vx,kt(Wi; θ) =
t∑

s=0
at(s) [hx(ϕks(Wi, θ)) + ψx,ks(Wi; θ)] .

Lemma 8. Suppose that Assumptions 1, 2 and 3 hold. Then, for all k ∈ {1, 2}, n,m ∈ Z+

and t ∈ T , we have

(i)
√
Nk

(
F̄

(n,m)
k (x, t, θ̂)− F (n,m)

k (x, t; θ0)
)

= ηN,kt(x)+oP(1), uniformly in x ∈ B(δN),

where

ηN,kt(x) = 1√
Nk

Nk∑
i=1
{Vx,kt(Wi; θ0)− E [Vx,kt(Wi; θ0)]} .
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(ii) rN
(
D̄(n,m)(·, t, θ̂)−D(n,m)(·, t; θ0)

)
⇒
√

1− λν1t(·)−
√
λν2t(·) in l∞(X ) uniformly

in P ∈ P, where ν1t and ν2t are Gaussian processes on X with mean zero and

covariance kernels given by C1t(·, ·) and C2t(·, ·), respectively.

Proof of Lemma 8: (i) By rearranging terms, we write
√
Nk

(
F̄

(n,m)
k (x, t, θ̂)− F (n,m)

k (x, t; θ0)
)

= 1√
Nk

Nk∑
i=1

t∑
s=0

at(s)
{
hx(ϕks(Wi, θ̂))− E (hx(ϕks(Wi, θ0)))

}

= 1√
Nk

Nk∑
i=1

t∑
s=0

at(s) {hx(ϕks(Wi, θ0))− E (hx(ϕks(Wi, θ0)))}

+
√
Nk

t∑
s=0

at(s)Γks,P (x)ᵀ [θ̂ − θ0],

+ ζ1N + ζ2N ,

where

ζ1N = 1√
Nk

Nk∑
i=1

t∑
s=0

at(s)
[
hx(ϕks(Wi, θ̂))− hx(ϕks(Wi, θ0))

]

− 1√
Nk

Nk∑
i=1

t∑
s=0

at(s)
[
E
(
hx(ϕks(Wi, θ̂))

)
− E (hx(ϕks(Wi, θ0)))

]
,

ζ2N = 1√
Nk

Nk∑
i=1

t∑
s=0

at(s)
[
E
(
hx(ϕks(Wi, θ̂))

)
− E (hx(ϕks(Wi, θ0)))

]

−
√
Nk

t∑
s=0

at(s)Γks,P (x)ᵀ[θ̂ − θ0].

By Assumption 3(b), we have ζ2N = oP(1). Let

H =
{

t∑
s=0

at(s) [hx(ϕks(·, θ))− hx(ϕks(·, θ))] : (x, θ) ∈ X ×BΘ(δN)
}
.

For any decreasing sequence δN → 0, the bracketing entropy of this class at ε ∈ (0, 1] is

bounded by Cε−dλ/s2 by Lemma B2 of Linton, Song and Whang (2010). Therefore, using

the fact dλ/s2 < 2 and the maximal inequality, we have ζ1N = oP(1). Now, Assumption

1(d) gives the desired result of Lemma 8(i).

(ii) Let F ={h+ ψ : (h, ψ) ∈ H0 ×Ψ0}, where H0 =
{∑t

s=0 at(s)hx(ϕks(·, θ0)) : x ∈ X
}

and Ψ0 =
{∑t

s=0 at(s)ψx,ks(·; θ0) : x ∈ X
}
. Using Assumption 3(c) and by Lemmas B1 and
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B2 of Linton, Song and Whang (2010), we can show that supP∈P logN[] (ε,F , L2(P )) <

C log ε. By Theorem 2.3 of Sheehy and Wellner (1991), F is a uniform Donsker class.

Therefore, using Assumption 1(b), we have the desired weak convergence result of Lemma

8(ii). �

Lemma 9. Suppose that Assumptions 1, 2, 3 and 4 hold. Then, for all k ∈ {1, 2},

n,m ∈ Z+ and t ∈ T , we have

(i)
√
Nk

(
F̄

(n,m)∗
k (x, t, θ̂∗)− F̄ (n,m)

k (x, t; θ̂)
)

= ν∗N,kt(x, θ̂) + oP∗(1), in P uniformly in

P ∈ P , where

ν∗N,kt(x, θ) = 1√
Nk

Nk∑
i=1

Vx,kt(W ∗
i ; θ)− 1

Nk

Nk∑
i=1

[Vx,kt(Wi; θ)]

 .
(ii) rN

(
D̄(n,m)∗(·, t, θ̂∗)− D̄(n,m)(·, t; θ̂)

)
⇒
√

1− λν1t(·) −
√
λν2t(·) in l∞(X ) condi-

tional on WN in P uniformly in P ∈ P, where ν1t and ν2t are Gaussian processes

on X with mean zero and covariance kernels given by C1t(·, ·) and C2t(·, ·), respec-

tively.

Proof of Lemma 9: (i) Write
√
Nk

(
F̄

(n,m)∗
k (x, t, θ̂∗)− F̄ (n,m)

k (x, t; θ̂)
)

= 1√
Nk

Nk∑
i=1

t∑
s=0

at(s)
[
hx(ϕks(W ∗

i , θ̂
∗))− hx(ϕks(Wi, θ̂))

]

=
t∑

s=0
at(s)Γ̂ks,P (x) + 1√

Nk

Nk∑
i=1

t∑
s=0

at(s)
[
hx(ϕks(W ∗

i , θ̂))− hx(ϕks(Wi, θ̂))
]
,

where Γ̂ks,P (x) is as defined in Assumption 4. Now the desired result holds because

Γ̂ks,P (x) = 1√
Nk

Nk∑
i=1

ψx,ks(W ∗
i ; θ̂)− 1

Nk

Nk∑
i=1

ψx,ks(Wi; θ̂)

+ oP ∗(1)

by Assumption 4.

(ii) Using Linton, Song and Whang (2010, Proof of Lemma B3), the class of functions

Hδ = {Vx,kt(·; θ) : (x, θ) ∈ X ×BΘ(δ)} is a bootstrap uniform Donsker class. Therefore,

we can show that

sup
(x,θ)∈X×BΘ(δ)

|ν∗N,kt(x, θ)− ν∗N,kt(x, θ0)| = oP ∗(1).

Now, the bootstrap uniform CLT applied to ν∗N,kt(x, θ0) gives the desired result. �
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Proof of Lemma 3: Define

ŝ(x) = [rN{v̂l(x)− vl(x)}]l∈NL ,

û(x) = [rN v̂l(x)]l∈NL and u(x) = [rNvl(x)]l∈NL .

Let BN(cN) := ∪A∈NLBN,A(cN,1, cN,2). Then it suffices to show the following results:

inf
P∈P0

P

{∫
X\BN (cN )

Λp(û(x))dx = 0
}
→ 1, (9.1)

inf
P∈P0

P

{∫
BN (cN )

{Λp(û(x))− ΛA,p(û(x))} dx = 0
}
→ 1 (9.2)

for each A ∈ NL, as N1, N2 →∞.

We first establish (9.1). Observe that, whenever x ∈ X \ BN(cN), we have rNvl(x) ≤

−cN,1 ∀l ∈ NL under the null hypothesis. Therefore, for all l ∈ NL, we have∫
X\BN (cN )

Λp(û(x))dx =
∫
X\BN (cN )

Λp(̂s(x) + u(x))dx

≤
∫
X\BN (cN,1)

Λp(̂s(x)− cN,11L)dx

≤ Lp/2

 L∑
l=1

[
rN sup

x∈X
|v̂l(x)− vl(x)| − cN,1

]2

+

p/2 , (9.3)

where 1L denotes an L-dimensional vector of ones and the last inequality follows from the

definition of Λp. By the uniform Donsker theorem of Sheehy and Wellner (1992), we can

show that for all l ∈ NL,

rN sup
x∈X
|v̂l(x)− vl(x)| = OP (1), P -uniformly. (9.4)

The result (9.1) now follows from (9.3), (9.4) and the assumption cN,1 →∞.

We now establish (9.2). Let ŝA(x) be an L-dimensional vector whose l-th entry is

rN v̂l(x) if l ∈ A and rN{v̂l(x)− vl(x)} if l ∈ NL \ A. We have∫
BN (cN )

ΛA,p(û(x))dx ≤
∫
BN (cN )

Λp(û(x))dx

≤
∫
BN (cN )

Λp(̂sA(x)− cN,11−L)dx, (9.5)

where 1−L denotes the L-dimensional vector whose l-th entry is zero if l ∈ A and one if

l ∈ NL \ A, the first and second inequalities holds by the definition of Λp and BN,A(cN),
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respectively. Also, using (9.4) and the assumption cN,1 →∞, we have

inf
P∈P0

P

{∫
BN (cN )

Λp(̂sA(x)− cN,11−L)dx =
∫
BN (cN )

ΛA,p(̂sA(x))dx
}
→ 1. (9.6)

The result (9.2) now follows from (9.5) and (9.6) because∫
BN (cN )

ΛA,p(̂sA(x))dx =
∫
BN (cN )

ΛA,p(û(x))dx.

�

Proof of Theorem 4: Let

T̄N (cN) :=
∫
BN (cN )

ΛA,p(̂s(x))dx.

Under the null hypothesis, we have vl(x) ≤ 0 for all l ∈ NL . Therefore, Lemma 3 implies

that

inf
P∈P0

P
{
TN ≤ T̄N (cN)

}
→ 1. (9.7)

Let c̄∗N,α denote the (1− α) quantile of the bootstrap distribution of

T̄ ∗N (cN) :=
∫
BN (cN )

ΛA,p(ŝ∗(x))dx.

Under Assumptions 1 - 5, it can be shown that

inf
P∈P

P
{
BN,A(cN,1, cN,2) ⊂ B̂A(ĉN) ⊂ BN,A(cN,2, cN,2)

}
→ 1 (9.8)

following the proof of Theorem 2, Claim 1 in Linton, Song and Whang (2010). By (9.8)

and Assumption 5, with probability approaching one, we have

T̄ ∗N (cN) ≤
∑
A∈NL

∫
B̂N,A(ĉN )

ΛA,p(ŝ∗(x))dx

and hence

inf
P∈P

P
{
c∗N,α ≥ c̄∗N,α

}
→ 1. (9.9)

There exists a sequence of probabilities {PN}N1,N2≥1 ⊂ P0 such that

lim sup
N1,N2→∞

sup
P∈P0

P
{
TN > c∗N,α,η

}
= lim sup

N1,N2→∞
PN

{
TN > c∗N,α,η

}
= lim

N1,N2→∞
PwN

{
TwN > c∗wN ,α,η

}
, (9.10)
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where {wN := (wN1 , wN2)}N1,N2≥1 ⊂ {(N1, N2)}N1,N2≥1 is a subsequence and TwN and

c∗wN ,α,η are the same as TN and c∗N,α,η, respectively, except that the sample size N is

replaced by wN .

Let σN(cN) := VarP
(
T̄N (cN)

)
denote the variance of T̄N (cN). By Assumption 1(c),

{σN(cN)}N1,N2≥1 is a bounded sequence uniformly in P ∈ P . Therefore, there exists a fur-

ther subsequence {uN := (uN1 , uN2)}N1,N2≥1 ⊂ {wN}N1,N2≥1 such that σuN (cuN ) converges.

We will show below that

lim sup
N1,N2→∞

PuN
{
TuN > c∗uN ,α,η

}
≤ α. (9.11)

Since PwN
{
TwN > c∗wN ,α,η

}
converges along {wN}, it also converges along the subsequence

{uN} . Therefore, the result of Theorem 4(i) holds because the limsup in (9.11) is equal

to the limit in (9.10).

We now establish (9.11). Consider first the case limN1,N2→∞ σuN (cuN ) > 0. We have

PuN
{
TuN > c∗uN ,α,η

}
≤ PuN

{
TuN > c̄∗uN ,α

}
+ o(1)

≤ PuN
{
T̄uN > c̄∗uN ,α

}
+ o(1)

≤ α + o(1),

where the first inequality uses the fact that c∗N,α,η ≥ c∗N,α ≥ c̄∗N,α with probability ap-

proaching one by (9.9), the second inequality follows from (9.7), and the last inequality

holds by the bootstrap consistency result in Lemma 9 and the uniform continuous map-

ping theorem (Linton, Song and Whang (2010, Lemma A1)).

We next consider the other case: limN1,N2→∞ σuN (cuN ) = 0. In this case, we have

PuN
{
TuN > c∗uN ,α,η

}
≤ PuN

{
T̄uN > c∗uN ,α,η

}
+ o(1)

≤ PuN
{
T̄uN > η

}
+ o(1)

= o(1),

where the first inequality follows from (9.7), the second inequality holds by the definition

(4.8), and the last convergence to zero follows from the condition limN1,N2→∞ σuN (cuN ) = 0

and the fact η > 0 . This completes the proof of Theorem 4. �

33



Proof of Theorem 5: By convexity of the map Λp, we have

TN =
∫
X

Λp(̂s(x) + u(x))dx

≥ 1
2p−1

∫
X

Λp(u(x))dx−
∫
X

Λp(−ŝ(x))dx. (9.12)

By (9.4), the last term of (9.12) is OP (1). Since rN →∞ and
∫
X Λp (v1(x), . . . , vL(x)) dx >

0, we have for any constant M1 > 0,

P
{ 1

2p−1

∫
X

Λp(u(x))dx > M1

}
→ 1.

Therefore, this implies that for any constant M2 > 0,

P {TN > M2} → 1.

The result of Theorem 5 now holds because c∗N,α,η = OP (1) by Lemma 9. �
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