5 research outputs found

    Reconstructing CNV genotypes using segregation analysis: combining pedigree information with CNV assay

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Repeated blocks of genome sequence have been shown to be associated with genetic diversity and disease risk in humans, and with phenotypic diversity in model organisms and domestic animals. Reliable tests are desirable to determine whether individuals are carriers of copy number variants associated with disease risk in humans and livestock, or associated with economically important traits in livestock. In some cases, copy number variants affect the phenotype through a dosage effect but in other cases, allele combinations have non-additive effects. In the latter cases, it has been difficult to develop tests because assays typically return an estimate of the sum of the copy number counts on the maternally and paternally inherited chromosome segments, and this sum does not uniquely determine the allele configuration. In this study, we show that there is an old solution to this new problem: segregation analysis, which has been used for many years to infer alleles in pedigreed populations.</p> <p>Methods</p> <p>Segregation analysis was used to estimate copy number alleles from assay data on simulated half-sib sheep populations. Copy number variation at the Agouti locus, known to be responsible for the recessive self-colour black phenotype, was used as a model for the simulation and an appropriate penetrance function was derived. The precision with which carriers and non-carriers of the undesirable single copy allele could be identified, was used to evaluate the method for various family sizes, assay strategies and assay accuracies.</p> <p>Results</p> <p>Using relationship data and segregation analysis, the probabilities of carrying the copy number alleles responsible for black or white fleece were estimated with much greater precision than by analyzing assay results for animals individually. The proportion of lambs correctly identified as non-carriers of the undesirable allele increased from 7% when the lambs were analysed alone to 80% when the lambs were analysed in half-sib families.</p> <p>Conclusions</p> <p>When a quantitative assay is used to estimate copy number alleles, segregation analysis of related individuals can greatly improve the precision of the estimates. Existing software for segregation analysis would require little if any change to accommodate the penetrance function for copy number assay data.</p

    Selection Signatures in Worldwide Sheep Populations

    Get PDF
    The diversity of populations in domestic species offers great opportunities to study genome response to selection. The recently published Sheep HapMap dataset is a great example of characterization of the world wide genetic diversity in sheep. In this study, we re-analyzed the Sheep HapMap dataset to identify selection signatures in worldwide sheep populations. Compared to previous analyses, we made use of statistical methods that (i) take account of the hierarchical structure of sheep populations, (ii) make use of linkage disequilibrium information and (iii) focus specifically on either recent or older selection signatures. We show that this allows pinpointing several new selection signatures in the sheep genome and distinguishing those related to modern breeding objectives and to earlier post-domestication constraints. The newly identified regions, together with the ones previously identified, reveal the extensive genome response to selection on morphology, color and adaptation to new environments

    Genetic testing for TMEM154 mutations associated with lentivirus susceptibility in sheep

    Get PDF
    Stefan Hiendleder is a member of the International Sheep Genomics ConsortiumIn sheep, small ruminant lentiviruses cause an incurable, progressive, lymphoproliferative disease that affects millions of animals worldwide. Known as ovine progressive pneumonia virus (OPPV) in the U.S., and Visna/Maedi virus (VMV) elsewhere, these viruses reduce an animal’s health, productivity, and lifespan. Genetic variation in the ovine transmembrane protein 154 gene (TMEM154) has been previously associated with OPPV infection in U.S. sheep. Sheep with the ancestral TMEM154 haplotype encoding glutamate (E) at position 35, and either form of an N70I variant, were highly-susceptible compared to sheep homozygous for the K35 missense mutation. Our current overall aim was to characterize TMEM154 in sheep from around the world to develop an efficient genetic test for reduced susceptibility. The average frequency of TMEM154 E35 among 74 breeds was 0.51 and indicated that highly-susceptible alleles were present in most breeds around the world. Analysis of whole genome sequences from an international panel of 75 sheep revealed more than 1,300 previously unreported polymorphisms in a 62 kb region containing TMEM154 and confirmed that the most susceptible haplotypes were distributed worldwide. Novel missense mutations were discovered in the signal peptide (A13V) and the extracellular domains (E31Q, I74F, and I102T) of TMEM154. A matrix-assisted laser desorption/ionization–time-of flight mass spectrometry (MALDI-TOF MS) assay was developed to detect these and six previously reported missense and two deletion mutations in TMEM154. In blinded trials, the call rate for the eight most common coding polymorphisms was 99.4% for 499 sheep tested and 96.0% of the animals were assigned paired TMEM154 haplotypes (i.e., diplotypes). The widespread distribution of highly-susceptible TMEM154 alleles suggests that genetic testing and selection may improve the health and productivity of infected flocks.Michael P. Heaton, Theodore S. Kalbfleisch, Dustin T. Petrik, Barry Simpson, James W. Kijas, Michael L. Clawson, Carol G. Chitko-McKown, Gregory P. Harhay, Kreg A. Leymaster, the International Sheep Genomics Consortiu
    corecore