214 research outputs found

    Network-based identification of driver pathways in clonal systems

    Get PDF
    Highly ethanol-tolerant bacteria for the production of biofuels, bacterial pathogenes which are resistant to antibiotics and cancer cells are examples of phenotypes that are of importance to society and are currently being studied. In order to better understand these phenotypes and their underlying genotype-phenotype relationships it is now commonplace to investigate DNA and expression profiles using next generation sequencing (NGS) and microarray techniques. These techniques generate large amounts of omics data which result in lists of genes that have mutations or expression profiles which potentially contribute to the phenotype. These lists often include a multitude of genes and are troublesome to verify manually as performing literature studies and wet-lab experiments for a large number of genes is very time and resources consuming. Therefore, (computational) methods are required which can narrow these gene lists down by removing generally abundant false positives from these lists and can ideally provide additional information on the relationships between the selected genes. Other high-throughput techniques such as yeast two-hybrid (Y2H), ChIP-Seq and Chip-Chip but also a myriad of small-scale experiments and predictive computational methods have generated a treasure of interactomics data over the last decade, most of which is now publicly available. By combining this data into a biological interaction network, which contains all molecular pathways that an organisms can utilize and thus is the equivalent of the blueprint of an organisms, it is possible to integrate the omics data obtained from experiments with these biological interaction networks. Biological interaction networks are key to the computational methods presented in this thesis as they enables methods to account for important relations between genes (and gene products). Doing so it is possible to not only identify interesting genes but also to uncover molecular processes important to the phenotype. As the best way to analyze omics data from an interesting phenotype varies widely based on the experimental setup and the available data, multiple methods were developed and applied in the context of this thesis: In a first approach, an existing method (PheNetic) was applied to a consortium of three bacterial species that together are able to efficiently degrade a herbicide but none of the species are able to efficiently degrade the herbicide on their own. For each of the species expression data (RNA-seq) was generated for the consortium and the species in isolation. PheNetic identified molecular pathways which were differentially expressed and likely contribute to a cross-feeding mechanism between the species in the consortium. Having obtained proof-of-concept, PheNetic was adapted to cope with experimental evolution datasets in which, in addition to expression data, genomics data was also available. Two publicly available datasets were analyzed: Amikacin resistance in E. coli and coexisting ecotypes in E.coli. The results allowed to elicit well-known and newly found molecular pathways involved in these phenotypes. Experimental evolution sometimes generates datasets consisting of mutator phenotypes which have high mutation rates. These datasets are hard to analyze due to the large amount of noise (most mutations have no effect on the phenotype). To this end IAMBEE was developed. IAMBEE is able to analyze genomic datasets from evolution experiments even if they contain mutator phenotypes. IAMBEE was tested using an E. coli evolution experiment in which cells were exposed to increasing concentrations of ethanol. The results were validated in the wet-lab. In addition to methods for analysis of causal mutations and mechanisms in bacteria, a method for the identification of causal molecular pathways in cancer was developed. As bacteria and cancerous cells are both clonal, they can be treated similar in this context. The big differences are the amount of data available (many more samples are available in cancer) and the fact that cancer is a complex and heterogenic phenotype. Therefore we developed SSA-ME, which makes use of the concept that a causal molecular pathway has at most one mutation in a cancerous cell (mutual exclusivity). However, enforcing this criterion is computationally hard. SSA-ME is designed to cope with this problem and search for mutual exclusive patterns in relatively large datasets. SSA-ME was tested on cancer data from the TCGA PAN-cancer dataset. From the results we could, in addition to already known molecular pathways and mutated genes, predict the involvement of few rarely mutated genes.nrpages: 246status: publishe

    SSA-ME Detection of cancer driver genes using mutual exclusivity by small subnetwork analysis

    Get PDF
    Because of its clonal evolution a tumor rarely contains multiple genomic alterations in the same pathway as disrupting the pathway by one gene often is sufficient to confer the complete fitness advantage. As a result, many cancer driver genes display mutual exclusivity across tumors. However, searching for mutually exclusive gene sets requires analyzing all possible combinations of genes, leading to a problem which is typically too computationally complex to be solved without a stringent a priori filtering, restricting the mutations included in the analysis. To overcome this problem, we present SSA-ME, a network-based method to detect cancer driver genes based on independently scoring small subnetworks for mutual exclusivity using a reinforced learning approach. Because of the algorithmic efficiency, no stringent upfront filtering is required. Analysis of TCGA cancer datasets illustrates the added value of SSA-ME: well-known recurrently mutated but also rarely mutated drivers are prioritized. We show that using mutual exclusivity to detect cancer driver genes is complementary to state-of-the art approaches. This framework, in which a large number of small subnetworks are being analyzed in order to solve a computationally complex problem (SSA), can be generically applied to any problem in which local neighborhoods in a network hold useful information

    Tensions, parallèles et interférences entre texte et musique. Le cas de Pierrot lunaire d’Arnold Schoenberg.

    Get PDF
    Cet article vise un double objectif. Il propose d’abord un examen détaillé des interférences entre le texte (forme et sémantique) et les structures musicales dans Pierrot lunaire d’Arnold Schoenberg. Les résultats de cette analyse suggèrent que le rapport texte-musique de cette oeuvre ne se conçoit que sur un mode hétérogène et extrêmement ambigu. Le deuxième objectif est de montrer que l’examen des exemples doit être étayé par une réflexion théorique sur les conditions de possibilité des interférences musico-textuelles, et sur les outils de description dont l’analyste dispose pour les mettre à jour.This article has two goals. First, it proposes a detailed analysis of the interference between the text (in its formal and semantic aspects) and the musical structures in Arnold Schoenberg’s Pierrot lunaire. The results suggest that the text-music relation in this work must be conceived of as heterogeneous and extremely ambivalent. The second goal is to show that such an analysis needs to be elaborated within a more general theoretical reflection about, on the one hand, the very conditions of possibility of the musical-textual interference and, on the other hand, the descriptive tools the researcher has at his disposition to reveal them

    Image-based dynamic phenotyping reveals genetic determinants of filamentation-mediated beta-lactam tolerance

    Get PDF
    Antibiotic tolerance characterized by slow killing of bacteria in response to a drug can lead to treatment failure and promote the emergence of resistance. beta-lactam antibiotics inhibit cell wall growth in bacteria and many of them cause filamentation followed by cell lysis. Hence delayed cell lysis can lead to beta-lactam tolerance. Systematic discovery of genetic factors that affect beta-lactam killing kinetics has not been performed before due to challenges in high-throughput, dynamic analysis of viability of filamented cells during bactericidal action. We implemented a high-throughput time-resolved microscopy approach in a gene deletion library of Escherichia coli to monitor the response of mutants to the beta-lactam cephalexin. Changes in frequency of lysed and intact cells due to the antibiotic action uncovered several strains with atypical lysis kinetics. Filamentation confers tolerance because antibiotic removal before lysis leads to recovery through numerous concurrent divisions of filamented cells. Filamentation-mediated tolerance was not associated with resistance, and therefore this phenotype is not discernible through most antibiotic susceptibility methods. We find that deletion of Tol-Pal proteins TolQ, TolR, or Pal but not TolA, TolB, or CpoB leads to rapid killing by beta-lactams. We also show that the timing of cell wall degradation determines the lysis and killing kinetics after beta-lactam treatment. Altogether, this study uncovers numerous genetic determinants of hitherto unappreciated filamentation-mediated beta-lactam tolerance and support the growing call for considering antibiotic tolerance in clinical evaluation of pathogens. More generally, the microscopy screening methodology described here can easily be adapted to study lysis in large numbers of strains

    IAMBEE : a web-service for the identification of adaptive pathways from parallel evolved clonal populations

    Get PDF
    IAMBEE is a web server designed for the Identification of Adaptive Mutations in Bacterial Evolution Experiments (IAMBEE). Input data consist of genotype information obtained from independently evolved clonal populations or strains that show the same adapted behavior (phenotype). To distinguish adaptive from passenger mutations, IAMBEE searches for neighborhoods in an organism-specific interaction network that are recurrently mutated in the adapted populations. This search for recurrently mutated network neighborhoods, as proxies for pathways is driven by additional information on the functional impact of the observed genetic changes and their dynamics during adaptive evolution. In addition, the search explicitly accounts for the differences in mutation rate between the independently evolved populations. Using this approach, IAMBEE allows exploiting parallel evolution to identify adaptive pathways. The web-server is freely available at http://bioinformatics.intec.ugent.be/iambee/ with no login requirement

    Network-based analysis of eQTL data to prioritize driver mutations

    Get PDF
    In clonal systems, interpreting driver genes in terms of molecular networks helps understanding how these drivers elicit an adaptive phenotype. Obtaining such a network-based understanding depends on the correct identification of driver genes. In clonal systems, independent evolved lines can acquire a similar adaptive phenotype by affecting the same molecular pathways, a phenomenon referred to as parallelism at the molecular pathway level. This implies that successful driver identification depends on interpreting mutated genes in terms of molecular networks. Driver identification and obtaining a network-based understanding of the adaptive phenotype are thus confounded problems that ideally should be solved simultaneously. In this study, a network-based eQTL method is presented that solves both the driver identification and the network-based interpretation problem. As input the method uses coupled genotype-expression phenotype data (eQTL data) of independently evolved lines with similar adaptive phenotypes and an organism-specific genome-wide interaction network. The search for mutational consistency at pathway level is defined as a subnetwork inference problem, which consists of inferring a subnetwork from the genome-wide interaction network that best connects the genes containing mutations to differentially expressed genes. Based on their connectivity with the differentially expressed genes, mutated genes are prioritized as driver genes. Based on semisynthetic data and two publicly available data sets, we illustrate the potential of the network-based eQTL method to prioritize driver genes and to gain insights in the molecular mechanisms underlying an adaptive phenotype. The method is available at http://bioinformatics.intec.ugent.be/phenetic_eqtl/index.htm

    Effect of streptozotocin-induced diabetes on left ventricular function in adult rats: an in vivo Pinhole Gated SPECT study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recent studies have suggested that diabetes mellitus (DM) may cause left ventricular (LV) dysfunction directly resulting in increased susceptibility to heart failure. Using pinhole collimators and advances in data processing, gated SPECT was recently adapted to image the rat heart. The present study was aimed to assess this new imaging technique for quantifying LV function and remodeling from the Streptozotocin (STZ) rat model compared to controls.</p> <p>Methods</p> <p>Twenty one rats were randomly assigned to control or diabetic group. Six months after the induction of diabetes by STZ, Pinhole 99 m Tc-sestamibi gated SPECT was performed for determining rat LV volumes and function. Post-mortem histopathologic analysis was performed to evaluate the determinant of LV remodeling in this model.</p> <p>Results</p> <p>After six months, the normalized to body weight LV End-systolic volume was significantly different in diabetic rats compared to controls (0.46 ± 0.02 vs 0.33 ± 0.03 μL/g; p = 0.01). The normalized LV End-diastolic volume was also different in both groups (1.51 ± 0.03 vs 0.88 ± 0.05 μL/g; p = 0.001) and the normalized stroke volume was significantly higher in STZ-rats (1.05 ± 0.02 vs 0.54 ± 0.06 μL/g; p = 0.001). The muscular fibers were thinner at histology in the diabetic rats (0.44 ± 0.07 vs 0.32 ± 0.06 AU; p = 0.01).</p> <p>Conclusion</p> <p>Pinhole 99 m Tc-sestamibi gated SPECT can successfully be applied for the evaluation of cardiac function and remodeling in STZ-induced diabetic rats. In this model, LV volumes were significantly changed compared to a control population, leading to a LV dysfunction. These findings were consistent with the histopathological abnormalities. Finally, these data further suggest the presence of diabetes cardiomyopathy.</p
    • …
    corecore