498 research outputs found

    On secant varieties of Compact Hermitian Symmetric Spaces

    Get PDF
    We show that the secant varieties of rank three compact Hermitian symmetric spaces in their minimal homogeneous embeddings are normal, with rational singularities. We show that their ideals are generated in degree three - with one exception, the secant variety of the 2121-dimensional spinor variety in \pp{63} where we show the ideal is generated in degree four. We also discuss the coordinate rings of secant varieties of compact Hermitian symmetric spaces.Comment: 15 pages, significantly cleaned u

    Symmetric functions and Koszul complexes

    Get PDF

    Towards Mixed Gr{\"o}bner Basis Algorithms: the Multihomogeneous and Sparse Case

    Get PDF
    One of the biggest open problems in computational algebra is the design of efficient algorithms for Gr{\"o}bner basis computations that take into account the sparsity of the input polynomials. We can perform such computations in the case of unmixed polynomial systems, that is systems with polynomials having the same support, using the approach of Faug{\`e}re, Spaenlehauer, and Svartz [ISSAC'14]. We present two algorithms for sparse Gr{\"o}bner bases computations for mixed systems. The first one computes with mixed sparse systems and exploits the supports of the polynomials. Under regularity assumptions, it performs no reductions to zero. For mixed, square, and 0-dimensional multihomogeneous polynomial systems, we present a dedicated, and potentially more efficient, algorithm that exploits different algebraic properties that performs no reduction to zero. We give an explicit bound for the maximal degree appearing in the computations
    corecore